Design of Microcontroller and IoT Digital Scales for Sheep Farming

https://doi.org/10.5614/joki.2023.15.2.6

Authors

  • Afrida Nurul Ulfa 1Departemen Teknik Elektro dan Informatika, Sekolah Vokasi, Universitas Gadjah Mada
  • Hidayat Nur Isnianto Departemen Teknik Elektro dan Informatika, Sekolah Vokasi, Universitas Gadjah Mada

Keywords:

microcontroller, Internet of Things, livestock, load cell, RFID, scales, temperature sensor

Abstract

This study developed an integrated digital scale with a microcontroller and an Internet of Things feature that weighs the sheep and measures its temperature. It is composed of a scale frame, two alternative power supplies, namely a 12 V battery and 24 V PSU, a component box containing a temperature sensor, load cell module, Arduino Mega 2560 microcontroller with built-in Wi-Fi ESP8266, equipped with an LCD user interface, RFID reader and thermal gun. The sheep were assigned their respective RFID IDs to enable detection by the RFID reader. When sheep walked into the core frame of the scales, the sheep ID appeared on the LCD. The load cell sensor automatically weighed the sheep. Simultaneously, the temperature data was displayed on the LCD and sent to the server when the user aimed the thermal gun at the sheep rectum. The weight measurement has been tested on live sheep. The accuracy of weight measurement was compared with a conventional standard scale. The system's RFID reader detected the Tag RFID within the 0—75 cm range. Thermal sensor MLX90614 measured the temperature with the lowest accuracy of 99,69% and the highest accuracy of 99,97%. The Flintec load cell PB 3.75375 measured the sheep's weight with the lowest accuracy of 98,28% and the highest accuracy of 99,92%.

References

M. Odintsov Vaintrub, H. Levit, M. Chincarini, I. Fusaro, M. Giammarco, and G. Vignola, "Review: Precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming," Animal, vol. 15, no. 3, p. 100143, 2021, doi: https://doi.org/10.1016/j.animal.2020.100143.

G. W. Wiriasto, M. Misbahuddin, A. S. Rachman, L. S. Irfan, and D. Budiman, “Alat Penimbang Hewan Ternak Elektronis bagi Komunitas Ternak di Kecamatan Ampenan,” Pros. Konf. Nas. Pengabdi. Kpd. Masy. dan Corp. Soc. Responsib., vol. 1, pp. 616–623, 2018. Available: https://prosiding-pkmcsr.org/index.php/pkmcsr/article/view/240/77.

H. Mayulu and T. P. Daru, “Kebijakan pengembangan peternakan berbasis kawasan: Studi kasus di Kalimantan Timur,” J. Trop. AgriFood, vol. 1, no. 2, p. 49, 2020, doi: http://dx.doi.org/10.35941/jtaf.1.2.2019.2583.49-60 .

G. Setyawan, M. Ardiansah, and I. Fahrurrozi, “Uji Kinerja Sistem Pemberi Vitamin untuk Industri Peternakan Ayam,” J. Otomasi Kontrol dan Instrumentasi, vol. 13, no. 1, pp. 47–57, 2021, doi: https://doi.org/10.5614/joki.2021.13.1.5 .

Pari, A. U. H. (2018). Pemanfaatan Recording untuk Meningkatkan Manajemen Ternak Kerbau di Kecamatan Matawai La Pawu Kabupaten Sumba Timur. Jurnal Sain Peternakan Indonesia, 13(1), 20–28, doi: https://doi.org/10.31186/jspi.id.13.1.20-28.

I. Alkamalia, Mawardati, and S. Budi, “Analisis Pengaruh Luas Lahan Dan Tenaga Kerja Terhadap Produksi Kakao Perkebunan Rakyat Di Provinsi Aceh,” Agrifo : J. Agribisnis Univ. Malikussaleh, vol. 2, no. 2, pp. 56–61, 2017, doi: https://doi.org/10.29103/ag.v2i2.369 .

N. Noviardi, A. Budiman, R. Mulya, and H. Efendi, “Perancangan Alat Ukur Tubuh Ternak untuk Menentukan Berat Badan Ternak Sapi Menggunakan Arduino dan Berbasis Android”, simtika, vol. 4, no. 2, pp. 47–54, May 2021. Available: https://ejournal.undhari.ac.id/index.php/simtika/article/view/355/195.

M. Khairurroziqin, “Identifikasi Ternak,” Academia.edu. [Online]. Available: https://www.academia.edu/38023291/IDENTIFIKASI_TERNAK.

S. R. Sokku and S. F. Harun, “Deteksi Sapi Sehat Berdasarkan Suhu Tubuh Berbasis Sensor MLX90614 dan Mikrokontroller,” Semin. Nas. LP2M UNM, pp. 613–617, 2019. Available: https://ojs.unm.ac.id/semnaslemlit/article/view/11690/0.

G. H. Wibowo, M. D. Ayatullah, and J. A. Prasetyo, “Sistem Cerdas Pemantau Hewan Ternak pada Alam Bebas Berbasis Internet of Things,” Jurnal Eltek, vol. 17, no. 02, pp. 18–31, 2019, doi: 10.33795/eltek.v17i2.188.

R. Wardhani, Lailia Dwi Kusuma, Jatmiko, Basuki Suryo, Khofifaturrahmah, “Studi Kasus Orf pada Kambing di Desa Megasari Kabupaten Kotabaru Kalimantan Selatan,” J. Ilm. Fill. Cendekia, vol. 7 No. 1, vol. 2, no. 8.5.2017, pp. 2003–2005, 2022, doi: https://doi.org/10.32503/fillia.v7i1.2102 .

K. Noinan, S. Wicha, and R. Chaisricharoen, "The IoT-based weighing system for growth monitoring and evaluation of fattening process in beef cattle farm," 7th Int. Conf. Digit. Arts, Media Technol. DAMT 2022 5th ECTI North. Sect. Conf. Electr. Electron. Comput. Telecommun. Eng. NCON 2022, pp. 384–388, 2022, doi: https://doi.org/10.1109/ECTIDAMTNCON53731.2022.9720346 .

G. I. S. Erwandha, “Rancang Bangun Sistem Internet of Things pada Timbangan Digital dengan Kapasitas 100 Kg Berbasis ESP32 & Thingsboard IoT Platform untuk Mengukur Massa,” Thesis (Sarjana), Fakultas Matematika dan Ilmu Pengetahuan Alam, Instrumentasi Fisika, Universitas Brawijaya, 2021. Available: http://repository.ub.ac.id/184558/.

M. I. Saputra, S. R. Sulistivanti, F. A. Setyawan, U. Murdika, and Y. T. Handiko, “Modeling of Digital Scale Based on IoT,” 2022 FORTEI-International Conf. Electr. Eng. FORTEI-ICEE 2022 - Proceeding, pp. 32–35, 2022, doi: https://doi.org/10.1109/FORTEI-ICEE57243.2022.9972950.

E. Mandayatma, “Peningkatan Resolusi Sensor Load Cell pada Timbangan Elektronik,” J. Eltek, vol. 16, no. 1, p. 37, 2018. Available: http://proceeding.sentrinov.org/index.php/sentrinov/article/view/224.

P. W. Wahyuni, “Rancang Bangun Timbangan dan Pemanfaatan Radio Frequency Identification untuk Manajemen dan Registrasi Ternak,” Pros. Semin. Nas. Sist. Teknol. Informasi, vol. 0, pp. 97–100, 2007. Available: https://repository.dinamika.ac.id/id/eprint/395/.

Texas Instruments, "LM2596 SIMPLE SWITCHER® Power Converter 150-kHz 3-A Step-Down Voltage Regulator data sheet (Rev. G)," Data Sheet, pp. 1–47, March 2023, [Online]. Available: LM2596 SIMPLE SWITCHER® Power Converter 150-kHz 3-A Step-Down Voltage Regulator.

XLSEMI, 400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC / DC Converter 400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC / DC Converter, pp. 1–8. Available: 400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter : https://www.sunrom.com/download/Sunrom-XL6009E1.pdf.

F. Koyanagi, "Arduino MEGA 2560 With Wi-Fi built-in - ESP8266," Instructables.com. Available: https://www.instructables.com/Arduino-MEGA-2560-With-WiFi-Built-in-ESP8266/.

Melexis, MLX90614 family Single and Dual Zone MLX90614 family, 2015. Available: MLX90614 family Datasheet Single and Dual Zone : https://www.melexis.com/-/media/files/documents/datasheets/mlx90614-datasheet-melexis.pdf.

G. Grolemund, User manual for ID01 UHF RFID Module, Version 2, pp. 1–8, 2012. Available: https://github.com/Arduinolibrary/DFRobot_ID10_UHF_RFID_Reader.

Flintec.com, PB Planar Beam Load Cell (3.75 - 375kg). Available: PB planar beam load cell : https://www.flintec.com/media/datasheets/pb-datasheet-en.pdf.

Flintec.com, EM100 load-cell electronics module, pp. 1–4. Available: EM100 load-cell electronics module :https://www.flintec.com/media/datasheets/em100-datasheet-en.pdf.

T. Clarke, The EAGLE Schematic & PCB Layout Editor - A Guide, pp. 1–12, 2011. Available: https://intranet.ee.ic.ac.uk/t.clarke/ee2lab/handouts/ARM/Eagle%20Guide/EAGLE-guide.pdf.

M. Ashari, R. R. A. Suhardiani, and R. Andriati, “Tampilan bobot badan dan ukuran linier tubuh domba Ekor Gemuk pada umur tertentu di Kabupaten Lombok Timur,” J. Ilmu dan Teknol. Peternak. Indones., vol. 1, no. 1, pp. 24–30, 2015, doi: https://doi.org/10.29303/jitpi.v1i1.6.

Published

2024-02-25

How to Cite

[1]
A. N. . Ulfa and H. N. . Isnianto, “Design of Microcontroller and IoT Digital Scales for Sheep Farming”, JOKI, vol. 15, no. 2, pp. 122-135, Feb. 2024.