Perancangan Sistem Kontrol Tekanan Pada Reaktor Biogas Berbasis PID Controller dengan Ziegler-Nichols dan Auto Tuning PSO
Kata Kunci:
PID Controller, Particle Swarm Optimization, kontrol tekanan, reaktor biogasAbstrak
Biogas merupakan sumber energi ramah lingkungan yang membantu mengurangi emisi gas rumah kaca dengan menghasilkan metana dari limbah organik atau biomassa. Namun, kualitas biogas sangat ditentukan oleh kandungan metana dan variabel tekanan yang mempengaruhi efisiensi dan keselamatan produksi biogas. Studi ini bertujuan untuk merancang sistem kontrol tekanan dan monitoring kadar gas metana pada reaktor biogas berbasis PID Controller dengan Particle Swarm Optimization (PSO). Pengujian dilakukan pada plant reaktor biogas tipe fixed dome di wilayah Jawa Timur, Indonesia. Tuning PID berbasis PSO ini akan dibandingkan hasilnya dengan dua metode tuning PID lainnya, yaitu Trial-error dan Ziegler-Nichols (ZN). Data nilai tekanan dan laju aliran biogas dari plant reaktor biogas dikumpulkan dan dilakukan pemodelan sistem sehingga menghasilkan fungsi transfer sistem. Selanjutnya dilakukan pengembangan algoritma PSO untuk optimasi parameter kontrol PID. Hasil studi ini menunjukkan bahwa metode tuning PID menggunakan PSO menghasilkan nilai error steady state sebesar 1.40%, rise time sebesar 0.09 s, settling time sebesar 2.1 s, maximum overshoot sebesar 0.986404, serta ITAE sebesar 0.0010801. Implementasi PID-PSO dapat meningkatkan performansi kontrol PID pada rise time, settling time, maximum overshoot dan ITAE dibandingkan Trial-Error dan ZN, sedangkan nilai error steady state pada tuning PID-PSO lebih tinggi daripada tuning menggunakan Trial-Error dan ZN.
Referensi
I. Cevrim and A. M. Caner, “Analysis of Biogas Sources in the Context of Renewable Energy; Erzurum Province as an Example,” Polish J. Environ. Stud., vol. 32, no. 4, pp. 3053–3062, 2023, doi: 10.15244/pjoes/162671.
I. Muhibbu-din, G. Adebayo, S. Odedele, and O. O. Ajibulu, “Review on Environmental Effect of Biogas Production,” Malaysian J. Appl. Sci., vol. 6, no. 2, pp. 93–104, 2021, doi: 10.37231/myjas.2021.6.2.290.
Z. Rogala, M. Stanclik, D. Łuszkiewicz, and Z. Malecha, “Perspectives for the Use of Biogas and Biomethane in the Context of the Green Energy Transformation on the Example of an EU Country,” Energies, vol. 16, no. 4, 2023, doi: 10.3390/en16041911.
M. F. Shih, C. H. Lay, C. Y. Lin, and S. H. Chang, “Exploring the environmental and economic potential for biogas production from swine manure wastewater by life cycle assessment,” Clean Technol. Environ. Policy, vol. 25, no. 2, pp. 451–464, 2023, doi: 10.1007/s10098-021-02157-1.
G. Golub, S. Kukharets, O. Zavadska, and O. Marus, “Determination of the rate of organic biomass decomposition in biogas reactors with periodic loading,” Int. J. Renew. Energy Res., vol. 9, no. 4, pp. 1741–1750, 2019, doi: 10.20508/ijrer.v9i4.10163.g7777.
B. P. and R. Laur, “Biogas Production Plants: A Methodological Approach for Occupational Health and Safety Improvement,” Intech, vol. 11, no. tourism, p. 13, 2016, [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
R. E. F. Lindeboom, S. G. Shin, J. Weijma, J. B. Van Lier, and C. M. Plugge, “Piezo-tolerant natural gas-producing microbes under accumulating pCO2,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–19, 2016, doi: 10.1186/s13068-016-0634-7.
V. Torretta, S. Copelli, S. Contini, and E. C. Rada, “Safety and reliability in biogas plants,” Saf. Secur. Eng. VI, vol. 1, pp. 227–238, 2015, doi: 10.2495/safe150201.
J. N. M. Tan-Soetedjo, “Manure Waste Management to Produce and Utilize Biogas Efficiently and Effectively in a Smart Eco-Social Village in Bandung,” Asia Pacific J. Manag. Educ., vol. 5, no. 3, pp. 58–71, 2022, doi: 10.32535/apjme.v5i3.1907.
N. Raeyatdoost, R. Eccleston, and C. Wolf, “Flexible Methane Production Using a Proportional Integral Controller with Simulation-Based Soft Sensor,” no. 1, pp. 75–83, 2020, doi: 10.1002/ceat.201900401.
F. R. Silmi, M. R. Kirom, and A. Qurthobi, “Analysis of the Influence of Internal Pressure Control to the Total Gas Production in Anaerobic Digester,” Procedia Eng., vol. 170, pp. 467–472, 2017, doi: 10.1016/j.proeng.2017.03.075.
R. Afrawira, R. Fajar Gumilang, S. Amalia, and S. Bandri, “Analisa Perbandingan Pengendali PID pada Motor DC Menggunakan Metode Ziegler-Nichols dan Trial and Error,” Ranah Res. J. Multidiscip. Res. Dev., vol. 5, no. 3, pp. 210–218, 2023, doi: 10.38035/rrj.v5i3.758.
P. Bistak, M. Huba, and D. Vrancic, “IPDT Model-Based Ziegler – Nichols Tuning Generalized to,” pp. 1–28, 2023.
K. Ogata, Modern Control Engineering, Fifth. New Jersey: Prentice Hall Boston Colombus, 2010.
L. Y. Jun et al., “Modeling and optimization by particle swarm embedded neural network for adsorption of methylene blue by jicama peroxidase immobilized on buckypaper/polyvinyl alcohol membrane,” Environ. Res., vol. 183, no. October 2019, p. 109158, 2020, doi: 10.1016/j.envres.2020.109158.
R. Kennedy, J. and Eberhart, “Particle Swarm Optimization,” Proc. IEEE Int. Conf. Neural Networks, vol. 4, pp. 1942–1948, 1995, doi: 10.1007/978-3-031-17922-8_4.
P. Shi, Jianchuan, and Xianyu, “PID parameter tuning based on improved particle swarm optimization algorithm,” J. Phys. Conf. Ser., vol. 2493, no. 1, 2023, doi: 10.1088/1742-6596/2493/1/012005.
B. B. Acharya, S. Dhakal, A. Bhattarai, and N. Bhattarai, “Pid speed control of dc motor using meta-heuristic algorithms,” Int. J. Power Electron. Drive Syst., vol. 12, no. 2, pp. 822–831, 2021, doi: 10.11591/ijpeds.v12.i2.pp822-831.
S. Chaturvedi, N. Kumar, and R. Kumar, “A PSO-optimized novel PID neural network model for temperature control of jacketed CSTR: design, simulation, and a comparative study,” Soft Comput., vol. 28, no. 6, pp. 4759–4773, 2024, doi: 10.1007/s00500-023-09138-0.
Y. O. M. Sekyere, F. B. Effah, and P. Y. Okyere, “Optimal Tuning of PID Controllers for LFC in Renewable Energy Source Integrated Power Systems Using an Improved PSO,” J. Electron. Electr. Eng., vol. 3, no. 1, pp. 65–83, 2024, doi: 10.37256/jeee.3120243869.
S. H. Nagarsheth, U. Pandya, and H. J. Nagarsheth, “Control Analysis Using Tuning Methods for a Designed, Developed and Modeled Cross Flow Water Tube Heat Exchanger,” Int. J. Mech. Mechatronics Eng., vol. 8, no. 12, pp. 1945–1950, 2014, [Online]. Available: https://waset.org/publications/10000270/control-analysis-using-tuning-methods-for-a-designed-developed-and-modeled-cross-flow-water-tube-heat-exchanger
A. S. A. K. Firmansyah, “Desain Pengendalian Ketinggian Air Dan Temperatur Uap Dalam Steam Drum Boiler Menggunakan Discrete Fractional Order PID (FOPID) CONTROLLER,” Tugas Akhir, Matematika FMIPA, ITS, Surabaya, 2015, p. 121 [Online]. Available: http://repository.its.ac.id/70858/
L. A. Putra, B. Huber, and M. Gaderer, “Real-world application of a discrete feedback control system for flexible biogas production,” Adv. Model. Simul. Eng. Sci., vol. 10, no. 1, 2023, doi: 10.1186/s40323-023-00251-1
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Hak Cipta (c) 2024 Arief Abdurrakhman, Lilik Sutiarso, Makhmudun Ainuri, Mirwan Ushada, Md Parvez Islam
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Penulis yang menerbitkan di Jurnal Otomasi Kontrol dan Instrumentasi menyetujui persyaratan berikut:
- Penulis mempertahankan hak cipta dan memberikan jurnal hak publikasi pertama dari karya secara bersamaan berlisensi di bawah Lisensi Creative Commons Attribution-ShareAlike 4.0 yang memungkinkan pihak lain untuk berbagi karya dengan menyatakan pengakuan atas kepengarangan karya dan publikasi yang berasal dari jurnal ini
- Penulis dapat membuat pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi karya jurnal yang diterbitkan (misalnya, menyimpan ke repositori institusional atau menerbitkannya dalam sebuah buku) dengan menyatakan pengakuan terhadap publikasi yang berasal dari jurnal ini.