Dynamic Simulation of a Multistage Centrifugal Compressor Operation to Overcome a Pressure Drop in a Gas Well

https://doi.org/10.5614/joki.2023.15.1.4

Authors

  • Meiti Pratiwi Departemen Teknik Bioenergi dan Kemurgi, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Nike Dwi Savitri Departemen Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Yusrin Ramli Graduate School of Science and Technology, Hirosaki University, Japan
  • Dwiwahju Sasongko Departemen Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Antonius Indarto ITB

Keywords:

Centrifugal compresor, compressor mapping, Hysis, modelling, optimation

Abstract

Currently, the utilization of natural gas as an energy source needs to be optimized due to its increasing demand. The utilization of natural gas to produce LNG requires a high-pressure operating system of 1000 psig. The installation of a multistage centrifugal compressor unit is essential to maintain the operating pressure when there is a decrease in the feed gas pressure from natural gas wells. This study aims to predict the performance of the compressor that would be used and optimize the compressor operating conditions to satisfy the specifications of the gas selling pressure. In this study, simulations were conducted on how to maintain the stability of the feed operating pressure in the case of a drop in the gas source pressure from 1000 psig to 200 psig over a period of 15 years. Herein, the gas flow rate under normal conditions is 80 MMSCFD with a gas flow rate variation under surge (minimum) and maximum conditions of 110% × normal flow rate. By using the compressor map prediction curve and Hysys simulation under dynamic conditions, the compressor performance can be analyzed and then used for process requirements in the field.

References

T. P. Adhi, T. S. Rosyid, Y. Ramli, dan A. Indarto, “Dynamic Evaluation: Centrifugal Compressor’s Operation in Determining Anti-Surge Controller,” J. Otomasi Kontrol dan Instrumentasi, vol. 14, no. 2, hal. 123–132, 2022, doi: 10.5614/joki.2022.14.2.6.

J. Speight, “Analysis of gas and condensate from tight formations,” Shale Oil and Gas Production Processes, J. B. T.-S. O. and G. P. P. Speight, Ed. Elsevier, 2020, hal. 373–450. doi: 10.1016/B978-0-12-813315-6.00007-5.

S. Kuczyński, M. Łaciak, A. Szurlej, dan T. Włodek, “Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement,” Energies, vol. 13, no. 19, hal. 5060, Sep 2020, doi: 10.3390/en13195060.

G. Etiope, “Natural Gas,” W. M. White, Ed. Cham: Springer International Publishing, 2018, hal. 961–965. doi: 10.1007/978-3-319-39312-4_152.

Direktorat Jenderal Minyak dan Gas Bumi Indonesia, Statistik Minyak dan Gas Bumi 2021, 2022.

S. M. Walas, Chemical Process Equipment Selection and Design, 1st ed. Butterworths, 1990.

O. Johansen, “Performance Monitoring System for Centrifugal Compressors On Heimdal Gas Field,” Profitable Condition Monitoring, B. K. N. Rao, Ed. Dordrecht: Springer Netherlands, 1993, hal. 55–67. doi: 10.1007/978-94-011-1616-9_7.

K. H. Lüdtke, Process Centrifugal Compressors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-09449-5.

Y. Ramli, S. Steven, E. Restiawaty, dan Y. Bindar, “Simulation Study of Bamboo Leaves Valorization to Small-Scale Electricity and Bio-silica Using ASPEN PLUS,” BioEnergy Res., vol. 15, no. 4, hal. 1918–1926, Des 2022, doi: 10.1007/s12155-022-10403-7.

A. Indarto, J. W. Choi, H. Lee, H. K. Song, "Decomposition of CCl4 and CHCl3 on Gliding Arc Plasma," J. Environ. Sci., vol. 18, hal. 83-89, Feb 2006.

M. Taher dan F. Evans, “Centrifugal Compressor Polytropic Performance—Improved Rapid Calculation Results—Cubic Polynomial Methods,” Int. J. Turbomachinery, Propuls. Power, vol. 6, no. 2, hal. 15, Mei 2021, doi: 10.3390/ijtpp6020015.

B. Guo, W. C. Lyons, dan A. Ghalambor, “Transportation Systems,” in Petroleum Production Engineering, B. Guo, W. C. Lyons, dan A. B. T.-P. P. E. Ghalambor, Ed. Burlington: Elsevier, 2007, hal. 133–158. doi: 10.1016/B978-075068270-1/50016-5.

M. V Casey dan T. M. Fesich, “The Efficiency of Turbocharger Compressors With Diabatic Flows,” J. Eng. Gas Turbines Power, vol. 132, no. 7, Jul 2010, doi: 10.1115/1.4000300.

L. Zhang, L. Liu, C. Zhang, X. He, Y. Zhang, dan T. Yang, “Performance analysis of an adiabatic compressed air energy storage system with a pressure regulation inverter-driven compressor,” J. Energy Storage, vol. 43, hal. 103197, Nov 2021, doi: 10.1016/j.est.2021.103197.

R. Decher, “The Compressor: Gas Turbine Engine Keystone,” in The Vortex and The Jet, R. Decher, Ed. Singapore: Springer Singapore, 2022, hal. 109–119. doi: 10.1007/978-981-16-8028-1_10.

L. Brenne, T. Bjørge, J. L. Gilarranz, J. M. Koch, dan H. Miller, “Performance Evaluation of A Centrifugal Compressor Operating Under Wet Gas Conditions.,” 2005. doi: 10.21423/R1V35Z.

DESFA, “Natural Gas Quality Specification.” https://www.desfa.gr/en/regulated-services (diakses 14 Juli 2022).

Published

2023-04-24

How to Cite

[1]
M. Pratiwi, N. Dwi Savitri, Y. Ramli, D. Sasongko, and A. Indarto, “Dynamic Simulation of a Multistage Centrifugal Compressor Operation to Overcome a Pressure Drop in a Gas Well”, JOKI, vol. 15, no. 1, pp. 33-45, Apr. 2023.

Most read articles by the same author(s)