Testing of Thermal Resistance and Heat Loss Simulator Design of the Fluid Flow in insulated pipe using Adaptive Neuro Fuzzy Inference System (ANFIS) and Least-squares Estimation (LSE) Method

https://doi.org/10.5614/joki.2024.16.1.2

Authors

  • Rahmat Kelompok Keahlian Rekayasa Kinerja Lingkungan Binaan, Fakultas Teknologi Industri, Institut Teknologi Bandung
  • Mohammad Kemal Agusta Kelompok Keahlian Teknologi Nano dan Kuantum, Fakultas Teknologi Industri, Institut Teknologi Bandung
  • Amirul Ihsan Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung

Keywords:

Simulator, Nano insulation materials, Thermal resistance, Heat loss, ANFIS, LSE

Abstract

Thermal resistance is essential for designing insulation systems to prevent heat losses in fluid flow through pipes. The testing method for obtaining data on the thermal resistance of nanoscale insulators is still not agreed upon, as is the explanation of the physical phenomena in the mechanism of inhibiting heat flow. This research aimed to design a simulator for testing the thermal resistance of insulators and heat losses through pipes as an alternative testing method for various insulation materials. Hot air flows through a pipe equipped with a measurement and data processing system to obtain the temperature distribution of the fluid flow in the pipe and the pipe surface temperature along the pipe. Thermal resistance and heat loss are the parameters of the insulation material. The mathematical model was solved numerically and validated with COMSOL Multiphysics software. In designing the simulator, both properties are estimated using the ANFIS and LSE methods. The ANFIS method yields the best estimation for thermal resistance and heat losses. The ANFIS estimation for thermal resistance yields an error of 0.163 m2K/W, and for heat losses yields an error value of 12.64 W/m. The developed ANFIS estimation method is highly resilient to errors in the measurement data.

References

X. Liu et al., “Analysis of transmission characteristics of steam long-distance heating pipeline,” Energy Reports, vol. 7, pp. 242–253, 2021, doi: 10.1016/j.egyr.2021.10.034.

E. Bell, Y. Lu, N. Daraboina, and C. Sarica, “Thermal methods in flow assurance: A review,” J Nat Gas Sci Eng, vol. 88, no. November 2020, p. 103798, 2021, doi: 10.1016/j.jngse.2021.103798.

D. Wang, “Heat loss along the pipeline and its control measures,” SN Appl Sci, vol. 5, no. 1, 2023, doi: 10.1007/s42452-022-05226-2.

N. Sunday, A. Settar, K. Chetehouna, and N. Gascoin, “An overview of flow assurance heat management systems in subsea flowlines,” Energies (Basel), vol. 14, no. 2, 2021, doi: 10.3390/en14020458.

E. G. Gasho and A. I. Kiseleva, “Analysis of energy-saving measures in industrial steam supply systems,” IOP Conf Ser Mater Sci Eng, vol. 791, no. 1, 2020, doi: 10.1088/1757-899X/791/1/012042.

A. N. Dolgova, S. A. Yunak, A. S. Rudenko, A. I. Haibullina, and E. S. Karataeva, “Comparative efficiency of pipeline heat-insulating materials,” IOP Conf Ser Mater Sci Eng, vol. 915, no. 1, 2020, doi: 10.1088/1757-899X/915/1/012010.

D. Bozsaky, “Recent studies on thermodynamic processes in nano-ceramic thermal insulation coatings,” Pollack Periodica, vol. 14, no. 1, pp. 107–116, 2019, doi: 10.1556/606.2019.14.1.11.

S. E. Kalnæs and B. P. Jelle, “Vacuum insulation panel products: A state-of-the-art review and future research pathways,” Appl Energy, vol. 116, no. 7465, pp. 355–375, 2014, doi: 10.1016/j.apenergy.2013.11.032.

J. Yang, M. I. Lourenço, and S. F. Estefen, “Thermal insulation of subsea pipelines for different materials,” International Journal of Pressure Vessels and Piping, vol. 168, no. August, pp. 100–109, 2018, doi: 10.1016/j.ijpvp.2018.09.009.

T. L. Bergman, and A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer. John Wiley & Sons Inc, 2011.

D. Bozsaky, “Laboratory Tests with Liquid Nano-ceramic Thermal Insulation Coating,” in Procedia Engineering, Elsevier Ltd, 2015, pp. 68–75. doi: 10.1016/j.proeng.2015.10.059.

J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing - A Computational Approach to Learning and Machine Intelligence. Upper Saddle River, NJ: Prentice-Hall Inc, 1997.

Standard Methods for Laboratory Air-flow Measurement. : American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc, Atlanta, 1987.

Published

2024-04-30

How to Cite

[1]
R. Romadhon, M. K. . Agusta, and A. . Ihsan, “Testing of Thermal Resistance and Heat Loss Simulator Design of the Fluid Flow in insulated pipe using Adaptive Neuro Fuzzy Inference System (ANFIS) and Least-squares Estimation (LSE) Method”, JOKI, vol. 16, no. 1, pp. 9-20, Apr. 2024.