Spatial Evaluation of Estimation Rainfall on Weather Radar Using Marshall-Palmer Z-R Method in West Java

https://doi.org/10.5614/joki.2024.16.1.4

Authors

  • Naufal Ananda (1) Program Studi Magister Instrumentasi dan Kontrol, Fakultas Teknologi Industri, Institut Teknologi Bandung (2)Balai Besar Meteorologi Klimatologi dan Geofisika Wilayah II, Badan Meteorologi Klimatologi dan Geofisika
  • Faqihza Mukhlish Kelompok Keahlian Fisika Teknik, Fakultas Teknologi Industri, Institut Teknologi Bandung
  • Haryas Subyantara Wicaksana (1) Program Studi Magister Instrumentasi dan Kontrol, Fakultas Teknologi Industri, Institut Teknologi Bandung (2)Balai Besar Meteorologi Klimatologi dan Geofisika Wilayah II, Badan Meteorologi Klimatologi dan Geofisika
  • Irvan Budiawan Program Doktor Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung

Keywords:

Rainfall, Weather Radar, Reflectivity, Z-R Marshall Palmer

Abstract

Rainfall is one of the weather parameters that affect various sectors. High rainfall intensity can trigger hydrometeorological disasters, so rainfall observation data is vital to monitor rainfall conditions in an area. An automatic rain gauge is an instrument that measures rainfall at an observation point, but the instrument has reasonably low coverage and has yet to reach the entire region. Weather radar is a remote sensing instrument capable of spatially estimating rainfall. Weather radar data can be used to estimate rainfall using the Marshall-Palmer Z-R method. The application of the method can be an alternative for areas that do not have rainfall observation equipment. However, the estimation needs to be evaluated to improve the accuracy of the estimation value. Based on the evaluation, the highest coefficient of determination was 0.92, and the lowest was 0.67. The lowest RMSE value was 2.40, the highest was 6.76, the highest ME value was 16.59, and the lowest was 5.93; the highest bias was 12.90, and the lowest was 5.30. The study results show that the weather radar can operate according to the specifications of the maximum observation distance of up to 220 KM, but the farther the observation distance to a point, the higher the performance of rainfall estimation accuracy.

References

J. A. Marengo, P. I. Camarinha, L. M. Alves, F. Diniz, dan R. A. Betts, “Extreme Rainfall and Hydro-Geo-Meteorological Disaster Risk in 1.5, 2.0, and 4.0°C Global Warming Scenarios: An Analysis for Brazil,” Frontiers in Climate, 3, 2021. https://doi.org/10.3389/fclim.2021.610433.

M. Yang, Y. Mou, Y. Meng, S. Liu, C. Peng, dan X. Zhou, “Modeling The Effects of Precipitation and Temperature Patterns on Agricultural Drought in China from 1949 to 2015,” Science of The Total Environment, 711, 135139. 2020. https://doi.org/10.1016/j.scitotenv.2019.135139.

H. Sri Naryanto, F. Prawiradisastra, R. Ardiyanto, dan W. Hidayat, “Analisis Pasca Bencana Tanah Longsor 1 Januari 2020 dan Evaluasi Penataan Kawasan di Kecamatan Sukajaya, Kabupaten Bogor” Jurnal Geografi Gea, 20(2), 197–213, 2020. https://doi.org/10.17509/gea.v20i2.24232.

S. Zheng, C. Han, J. Huo, W. Cai, Y. Zhang, P. Li, G. Zhang, B. Ji, J. Zhou, “Research on Rainfall Monitoring Based on E-Band Millimeter Wave Link in East China.”. 1;21(5):1670, Mar 2021. doi: 10.3390/s21051670. PMID: 33804316; PMCID: PMC7957804.

J. Qiu, B. Wang, dan C. Zhou, ”Forecasting Stock Prices with Long-Short Term Memory Neural Network Based on Attention Mechanism,” PLoS ONE, 15(1), 2020. https://doi.org/10.1371/journal.pone.0227222.

Q. Qiu, J. Liu, J. Tian, Y. Jiao, C. Li, W. Wang, dan F. Yu, “Evaluation of The Radar QPE and Rain Gauge Data Merging Methods in Northern China.” Remote Sensing, 12(3), 2020. https://doi.org/10.3390/rs12030363.

N. Ananda, H. Hartanto, dan D. Kurniadi, “Preliminary Evaluation of Weather Radar Rainfall Estimation in Bandung City,” 8th International Conference on Instrumentation, Control, and Automation (ICA), IEEE, 76–80, 2023. https://doi.org/10.1109/ICA58538.2023.10273091.

R. B. Sharif, E. H. Habib, dan M. ElSaadani, “Evaluation of Radar-Rainfall Products Over Coastal Louisiana,” Remote Sensing, 12(9), 1477, 2020. https://doi.org/10.3390/rs12091477.

A. Kosasih, H. Hartono, dan R. H. Jatmiko, “Pengaruh Koreksi Atenuasi Radar Cuaca terhadap Perhitungan Estimasi Curah Hujan di Jawa Timur.” Jurnal Teknosains, 10(2), 111, 2021. https://doi.org/10.22146/teknosains.53452.

L. Ardiyanto, A. M. Hanif, M. Alfaridzi, S. Ariwibowo, E. Wardoyo, dan I. R. Nugraheni, “Estimasi Curah Hujan Radar Cuaca dengan Hubungan Z-R Berbeda pada Tipe Awan Hujan Konvektif dan Stratiform di Lampung.” Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 4, 51, 2019. https://doi.org/10.20961/prosidingsnfa.v4i0.35912.

A. Ali, I. H. Umam, H. Leijnse, dan U. Sa’adah, “Preliminary Study of A Radio Frequency Interference Filter for Non-Polarimetric C-Band Weather Radar in Indonesia (Case Study: Tangerang Weather Radar),” International Journal of Remote Sensing and Earth Sciences, 18(2), 189–202 ,2021. https://doi.org/10.30536/j.ijreses.2021.v18.a3727.

B. H. K. Tjasyono, “Variasi Iklim Musiman dan Non Musiman di Indonesia.” Prosiding Lokakarya Meteorologi Geofisika dan Klimatologi untuk Media dan Pengguna Jasa, 2007.

M. Heistermann, S. Jacobi, and T. Pfaff, “Technical Note: An Open Source Library for Processing Weather Radar Data (Wradlib),” Hydrol. Earth Syst. Sci., vol. 17, no. 2, pp. 863–871, 2013. doi: 10.5194/hess-17-863-2013.

J. S. Marshall & W. M. K. Palmer, “The Distribution of Raindrops with Size.” Journal of Meteorology, 5(4), 165–166, 1948. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

T. D. Hutapea, D. S. Permana, A. S. Praja & L. F. Muzayanah, “Modifikasi Konstanta Persamaan ZR Radar Surabaya untuk Peningkatan Akurasi Estimasi Curah Hujan.” Jurnal Meteorologi dan Geofisika, 21(2), 91-97. 2021.

W. Tahir, M. A. Mohd Ariffin, J. Abdullah, Z. Ibrahim, S. Ramli, S. Mohd Deni, H. Hassan, L. Mohd Sidek, Y. W. Sang, D. J. Yik, & N. K. Chang, “Mean Field Bias Correction to Radar QPE as Input to Flood Modeling for Malaysian River Basins.” International Journal of Integrated Engineering, 14(5). https://doi.org/10.30880/ijie.2022.14.05.019, 2022.

B. I. Abadi & R. Sumiharto, “Klasifikasi Curah Hujan Menggunakan Neuro-Fuzzy System Melalui Citra Radar Cuaca.” IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 11(1), 49, (2021). https://doi.org/10.22146/ijeis.57980.

E. Goudenhoofdt and L. Delobbe, ‘Evaluation of Radar-Gauge Merging Methods for Quantitative Precipitation Estimates’, Hydrol Earth Syst Sci, vol. 13, no. 2, pp. 195–203, Feb. 2009, doi: 10.5194/hess-13-195-2009.

D. M. Putri, Y. Nugroho, J. Rahmad Pratama, S. Meteorologi Iskandar, K. Barat, & K. Tengah, “Kajian Implementasi Quality Control Faktor Bright Band dan Atenuasi Radar Cuaca C-Band.” Jurnal Teori dan Aplikasi Fisika, Vol. 09, Issue 01, 2021.

A. Ali, F. Lubis, & U. Sa’adah, “Komparasi Algoritma Asimilasi Data Radar-Rain Gauge dalam Peningkatan Akurasi Quantitative Precipitation Estimation (QPE): Mean Field Bias (MFB) dan Brandes Spatial Adjustment (BRA),” Jurnal Sains & Teknologi Modifikasi Cuaca, 24(1), 35–42, 2023.

R. O. Imhoff, C. C. Brauer, A. Overeem, A. H. Weerts & R. Uijlenhoet, “Spatial and Temporal Evaluation of Radar Rainfall Nowcasting Techniques on 1,533 Events,” Water Resources Research, 56(8), 2020. https://doi.org/10.1029/2019WR026723.

Published

2024-04-30

How to Cite

[1]
N. Ananda, F. . Mukhlish, H. S. . Wicaksana, and I. . Budiawan, “Spatial Evaluation of Estimation Rainfall on Weather Radar Using Marshall-Palmer Z-R Method in West Java ”, JOKI, vol. 16, no. 1, pp. 35-43, Apr. 2024.