Implementation of Model-based Convolutional Neural Network for Ginger Candy Image Feasibility Classification on Android Device

https://doi.org/10.5614/joki.2025.17.1.5

Authors

  • Estiyan Dwipriyoko 1Universitas Langlangbuana, 40261, Bandung, Indonesia
  • Fabio Syechan Pamungkas Universitas Langlangbuana, 40261, Bandung, Indonesia
  • Kusmaya Kusmaya Universitas Langlangbuana, 40261, Bandung, Indonesia
  • Dianne Amor Kusuma Universitas Padjadjaran, 45363, Sumedang, Indonesia

Keywords:

Ginger Candy, CNN, MobileNetV2, CISP-DM, Prototyping, Android

Abstract

Ginger is one of the primary ingredients for ginger candy. The manual process of evaluating the feasibility of ginger candy at the Tasacika Company is still prone to errors and is less efficient. This research aims to develop a Convolutional Neural Network model for classifying the feasibility of ginger candy and create an Android-based application that facilitates this process. The research method uses an Experimental approach. Model development is carried out with a Convolutional Neural Network with the MobileNetV2 architecture, using the Cross Industry Standard Process for Data Mining methods. Software development is done using the Prototyping method. This research used a dataset of images taken directly from the Tasacika Company's ginger candy factory. The model is trained and tested using Google Colab with the Python programming language and the TensorFlow and Keras libraries. Implementation is carried out using Kotlin and XML. It can be concluded that the research has succeeded in developing a ginger candy feasibility classification model. The test results show that the developed model is effective in minimizing human error in the process of checking the feasibility of ginger candy. This research also succeeded in developing an Android-based ginger candy feasibility classification application

References

M. Melviani, N. Noval & O. Z. Fricillia, “Pembuatan permen jahe sebagai peningkat imunitas tubuh pada masa pandemi.” LOGISTA - Jurnal Ilmiah Pengabdian Kepada Masyarakat, 6(1), 167 , 2022. https://doi.org/10.25077/logista.6.1.167-170.2022

S. Rohmat, A. Tsani, & N. K. Rini, “Pengaruh segmentingan dan targeting terhadap strategi pemasaran permen jahe cantik pada perusahaan Tasacika.” Paspalum: Jurnal Ilmiah Pertanian, 8(2), 99, 2020. https://doi.org/10.35138/paspalum.v8i2.192

D. Wulandari, & D. Anjani, “Penerapan metode fuzzy Tsukamoto untuk mengukur tingkat kelayakan produk.” MIB : Jurnal Media Informatika Budidarma, 7, 2024–2031, 2024. https://doi.org/10.30865/mib.v7i4.6879

R. Namruddin, Mirfan, & Irfandi,. “Klasifikasi kesegaran buah apel menggunakan metode Convolutional Neural Network (CNN) berbasis Android,” Prosiding SISFOTEK, 295–302, 2023. Online]. Available: https://seminar.iaii.or.id/index.php/SISFOTEK/article/download/410/342

M. K. Rahmadhika & A. M. Thantawi, “Rancang bangun aplikasi face recognition pada pendekatan CRM menggunakan OpenCV dan algoritma Haarcascade,” IKRA-ITH INFORMATIKA: Jurnal Komputer Dan Informatika, 5(1), 109–118, 2021. [Online]. Available: https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/921

M. S. Nugroho & E. Nurraharjo, “ Klasifikasi hama tanaman padi berdasarkan citra daun menggunakan metode Convolutional Neural Network.” BIOEDUSAINS : Jurnal Pendidikan Biologi Dan Sains, 6(2), 672–682, 2023. https://doi.org/10.31539/bioedusains.v6i2.8080

S. Bagas Valentino, “Klasifikasi kualitas daging marmer berdasarkan citra warna daging menggunakan metode Convolutional Neural Network,” JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 125–129 , 2023. https://doi.org/10.36040/jati.v7i1.6128

R. R. M. A. R. Maulana, F. Rizal, & W. J. Shudiq, “Implementasi algoritma Convolutional Neural Network (CNN) untuk deteksi kesegaran telur berbasis Android,” Jusikom: Jurnal Sistem Komputer Musirawas, 8(1), 1–10, 2023. [Online]. Available: https://jurnal.univbinainsan.ac.id/index.php/jusikom/

article/download/1949/1057

S. Darmawan Putra Bahari, & U. Latifa, “Klasifikasi buah segar menggunakan teknik computer vision untuk pendeteksian kualitas dan kesegaran buah,” JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1567–1573,2023. https://doi.org/10.36040/jati.v7i3.6871

I. Maryati, “Website perpustakaan ‘Library HUB’ dengan pencarian buku berdasarkan gambar menggunakan Google MLKit,” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(4), 1821–1831, , 2021. https://doi.org/10.35957/jatisi.v8i4.1269

R. Gelar Guntara, “Pemanfaatan Google Colab untuk aplikasi pendeteksian masker wajah menggunakan algoritma Deep Learning YOLOv7.” Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(1), 55–60 , 2023. https://doi.org/10.47233/jteksis.v5i1.750

R. H. Alfikri, M. S. Utomo, H. Februariyanti & E. Nurwahyudi, “Pembangunan Aplikasi Penerjemah Bahasa Isyarat Dengan Metode CNN Berbasis Android,” Jurnal Teknoinfo, 16(2), 183, 2022 https://doi.org/10.33365/jti.v16i2.1752

I. Septian & H. Septanto, “Pengembangan model pendeteksian gambar alat musik dengan metode Faster R-CNN dengan Library Keras.” KALBISIANA: Jurnal Mahasiswa Institut Teknologi Dan Bisnis Kalbis, 8(1), 1–11, 2022. https://doi.org/10.37012/jtik.v6i2.299

Y. Suhanda, I. Kurniati & S. Norma, “Penerapan metode Crisp-DM dengan algoritma K-Means Clustering untuk segmentasi mahasiswa berdasarkan kualitas akademik.” Jurnal Teknologi Informatika Dan Komputer, 6(2), 12–20, 2020. https://doi.org/10.37012/jtik.v6i2.299

E. W. Fridayanthie , H. Haryanto, & T. Tsabitah, “Penerapan metode prototype pada perancangan sistem informasi penggajian karyawan (Persis Gawan) berbasis web,” Paradigma - Jurnal Komputer Dan Informatika, 23(2), 2021. https://doi.org/10.31294/p.v23i2.10998

J. S. Saputro and U. Latifa, “Prototipe Sistem Peringatan Dini (EWS) bendungan berbasis Internet of Things (IoT) dengan antarmuka web dan aplikasi mobile”, Jurnal Otomasi Kontrol dan Instrumentasi, vol. 14, no. 1, pp. 31 - 40, Jun. 2022. https://doi.org/10.5614/joki.2022.14.1.4

A. Febriandirza, “Perancangan aplikasi absensi online dengan menggunakan bahasa pemrograman Kotlin,” Pseudocode, 7(2), 123–133, 2020. https://doi.org/10.33369/pseudocode.7.2.123-133

M. D. Payana & H. Pramunsyie, “Perancangan media pembelajaran English Grammar berbasis Android,”. Journal of Informatics and Computer Science, 5(2), 110, 2019. https://doi.org/10.33143/jics.vol5.iss2.548

T. Wahyuningrum, “Implementasi XML Encryption (XML Enc) menggunakan Java,” Jurnal Infotel - Informatika Telekomunikasi Elektronika, 4(1), 17, 2012. https://doi.org/10.20895/infotel.v4i1.98

S. Verma, “Comparative Analysis of Image Classification Algorithms,” International Journal for Research in Applied Science and Engineering Technology, 11(12), 1513–1520, 2023. https://doi.org/10.22214/ijraset.2023.57662

B. Nurbuana, T. Cahya, E. Nasrinatun, M. P. Arifin, M. Ayu, & D. Widya, ”Klasifikasi dan pengenalan pola penyakit cabai dengan metode CNN ( Convolution Neural Network ),” STAINS : Seminar Nasional Teknologi dan Sains, 3, 125–132, 2024. https://doi.org/10.29407/stains.v3i1.4137

D. Kusuma, E. Dwipriyoko, M. Ihsan & K. Syarif, “Prototipe kendali listrik rumah lewat perintah suara menggunakan jaringan nirkabel dan mikrokontroler,” Jurnal Tiarsie, 21(3), 15-24. 2024. https://doi.org/10.32816/tiarsie.v21i3.252

Published

2025-04-30

How to Cite

[1]
E. Dwipriyoko, F. S. . Pamungkas, K. . Kusmaya, and D. A. Kusuma, “Implementation of Model-based Convolutional Neural Network for Ginger Candy Image Feasibility Classification on Android Device”, JOKI, vol. 17, no. 1, Apr. 2025.