Interactive Learning for Website-Based PID Controller

https://doi.org/10.5614/joki.2025.17.2.6

Authors

  • Patricia Fernandez Program Studi Teknik Elektro, Universitas Tanjungpura, 78124, Pontianak, Indonesia
  • Ferry Hadary Program Studi Teknik Elektro, Universitas Tanjungpura, 78124, Pontianak, Indonesia
  • Seno Darmawan Panjaitan Program Studi Teknik Elektro, Universitas Tanjungpura, 78124, Pontianak, Indonesia

Keywords:

interactive learning, PID control, ESP-32, WebSocket, real-time simulation

Abstract

Conventional learning methods for PID control systems demonstrate weaknesses in concept comprehension effectiveness due to lack of real-time visualization and theory-practice integration. This study aims to develop a web-based interactive learning platform integrating digital simulation with physical experiments using ESP-32. The research method employs Research and Development approach with ADDIE model including literature study, system design, platform implementation, and evaluation through beta testing with 23 Electrical Engineering students. The platform utilizes ESP-32, DC motor, rotary encoder, BTS 7960 driver, and web interface using HTML, Tailwind CSS, and JavaScript for real-time PID parameter control via WebSocket protocol. Evaluation results show average pre-test and post-test score improvement of 34.7% with paired t-test analysis p < 0.01. The platform achieves ±2% measurement accuracy, 45ms communication latency, and 99.2% WebSocket stability. Quality assessment yields feasibility score 4.2/5.0, practicality 4.0/5.0, and effectiveness 4.3/5.0. The platform significantly improves PID control concept understanding compared to conventional methods.

References

M. Irhas, Iftitah, and S. A. A. Ilham, “Penggunaan kontrol PID dengan berbagai metode untuk analisis pengaturan kecepatan motor DC,” JFT: Jurnal Fisika dan Terapannya, vol. 7, no. 1, 2020, pp. 78–86, doi: https://doi.org/10.24252/jft.v7i1.13846

H. Wicaksono and J. Pramudijanto, “Kontrol PID untuk pengaturan kecepatan motor DC dengan metode tuning Direct Synthesis,” J. Tek. Elektro, vol. 4, no. 1, pp. 10–17, 2004, doi : https://doi.org/10.9744/jte.4.1

A. Leva, “PID control education for computer engineering students: A step to bridge a cultural gap,” IFAC J. Syst. Control, vol. 8, p. 100051, 2019, doi: https://doi.org/10.1016/j.ifacsc.2019.100051

K. J. Astrom, S. Dormido, T. Hagglund, M. Berenguel, and Y. Piguet, “Interactive learning modules for PID control using interactive graphics to learn PID control and develop intuition,” IEEE Control Syst., vol. 28, no. 5, pp. 118–134, 2008, doi: https://doi.org/10.1109/MCS.2008.927332

A. Abdulameer, M. Sulaiman, M. S. M. Aras, and D. Saleem, “Tuning methods of PID controller for DC motor speed control,” Indones. J. Electr. Eng. Comput. Sci., vol. 3, no. 2, pp. 343–349, 2016, doi: https://doi.org/10.11591/ijeecs.v3.i2.pp343-349

T. Pham, B. Nguyen, S. Ha, and T. N. Ngoc, “Digital transformation in engineering education: Exploring the potential of AI-assisted learning,” Australas. J. Educ. Technol., vol. 39, no. 5, pp. 1–19, 2023, doi: https://doi.org/10.14742/ajet.8825

K. Ogata, Modern Control Engineering, Prentice Hall, 2010.

H. Kusumah and R. A. Pradana, “Penerapan trainer interfacing mikrokontroler dan Internet of Things berbasis ESP32 pada mata kuliah interfacing,” J. Cerita, vol. 5, no. 2, pp. 120–134, 2019, doi: https://doi.org/10.33050/cerita.v5i2.237

M. Chundi and S. Liu, “Hardware / software integrated training on embedded systems,” International Journal of Innovative Computing, Information & Control IJICIC 2 , no. 2, April 2006, [Online]. Available : https://www.researchgate.net/publication/240916157_Hardwaresoftware_integrated_training_on_embedded_systems

M. Huba, P. Mižák, and P. Bisták, “PID tuning for DIPDT system by web application,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 201–206, 2022, doi: https://doi.org/10.1016/j.ifacol.2022.06.033

Y. Mewada, S. Prajapati, and R. Hakani, “System for PID control and autotuning PID using Ziegler-Nichols method,” Influ. Int. J. Sci. Rev., vol. 4, no. 1, pp. 249–253, 2022, doi: https://doi.org/10.54783/influencejournal.v4i1.23

U. Umar, M. B. Purwanto, and M. M. Al Firdaus, “Research and development: as the primary alternative to educational research design frameworks,” JELL (Journal English Lang. Lit), STIBA-IEC Jakarta, vol. 8, no. 01, pp. 73–82, 2023, doi: https://doi.org/10.37110/jell.v8i01.172

L. A. Hutahaean, S. Siswandari, and H. Harini, “Need analysis of the development of economics interactive e-module based on contextual teaching and learning for SMA,” Budapest Int. Res. Critics Linguist. Educ. J., vol. 2, no. 2, pp. 343–350, 2019, doi: https://doi.org/10.33258/birle.v2i2.309

D. Nyale, “Unravelling DevOps agile methodologies: a comprehensive review of recent research,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 11, pp. 2012–2021, 2023, doi: https://doi.org/10.22214/ijraset.2023.56986

M. Harisuddin Thohir, A. Pinandito, and L. Fanani, “Perbandingan websocket pada komunikasi aplikasi perpesanan berbasis Android menggunakan Library AndroidAsync, Java Websocket, dan Nv Websocket Client,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4999–5008, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/3071/1233/20758

M. Zaman, N. Puryear, S. Abdelwahed, and N. Zohrabi, “A review of IoT-based smart city development and management,” Smart Cities, vol. 7, no. 3, pp. 1462–1501, 2024, doi: https://doi.org/10.3390/smartcities7030061.

T. Paramitha, M. Fauziyah, and H. K. Safitri, “Implementasi kontrol PID pada pengaturan kecepatan motor DC dalam pengadukan pupuk organik cair berbasis Arduino,” Elkolind : Jurnal Elektronika Otomasi Industri, vol. 11, no. 2 , pp. 328–340, 2024, doi : https://doi.org/10.33795/elkolind.v11i2%60.3300

P. D. Lestari and A. Hadi, “Desain PI controller menggunakan Ziegler Nichols tuning pada proses nonlinier multivariabel,” Semin. Nas. Teknol. Inf. Komun. dan Ind. 4, pp. 439–446, 2012.

B. Tomić and T. Milić, “Automated interpretation of key performance indicator values and its application in education,” Knowledge-Based Syst., vol. 37, pp. 250–260, Jan. 2013, doi: https://doi.org/10.1016/j.knosys.2012.08.006

A. Mohan, Fundamentals of Control Engineering, Educohack Press, 2025.

E. Okafor, D. Udekwe, Y. Ibrahim, M. Bashir Mu’azu, and E. G. Okafor, “Heuristic and deep reinforcement learning-based PID control of trajectory tracking in a ball-and-plate system,” J. Inf. Telecommun., vol. 5, no. 2, pp. 179–196, 2021, doi: https://doi.org/10.1080/24751839.2020.1833137

X. Wang, H. Yi, J. Xu, C. Xu, and L. Song, “PID controller based on improved DDPG for trajectory tracking control of USV,” J. Mar. Sci. Eng., vol. 12, no. 10, 2024, doi: https://doi.org/10.3390/jmse12101771

V. Kroumov, K. Shibayama, and A. Inoue, “Interactive learning tools for enhancing the education in control systems,” Proc. - Front. Educ. Conf. FIE, vol. 1, p. T4E23-T4E28, 2003, doi: https://doi.org/10.1109/FIE.2003.1263384

C. A. Ramos-Paja, J. M. Ramírez Scarpetta, and L. Martínez-Salamero, “Integrated learning platform for internet-based control-engineering education,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3284–3296, 2010, doi: https://doi.org/10.1109/TIE.2010.2043033

G. Ananthi and G. Prabhakar, “GUI-Driven real-time PID control tool for educational virtual systems,” J. Eng. Educ. Transform., vol. 38, no. 2, pp. 60–71, 2024, doi: https://doi.org/10.16920/jeet/2024/v38i2/24190

A. H. EL-Ebiary, M. A. Attia, M. I. Marei, and M. A. Sameh, “An integrated seamless control strategy for distributed generators based on a deep learning Artificial Neural Network,” Sustain., vol. 14, no. 20, 2022, doi: https://doi.org/10.3390/su142013506

N. C. Patel, B. K. Sahu, D. P. Bagarty, P. Das, and M. K. Debnath, “A novel application of ALO-based fractional order fuzzy PID controller for AGC of power system with diverse sources of generation,” Int. J. Electr. Eng. Educ., vol. 58, no. 2, pp. 465–487, 2021, doi: https://doi.org/10.1177/0020720919829710

A. I. Lakhani, M. A. Chowdhury, and Q. Lu, “Stability-preserving automatic tuning of PID control with reinforcement learning,” Complex Eng. Syst., vol. 2, no. 1, 2022, doi: https://doi.org/10.20517/ces.2021.15

M. Sravani and P. V. S. Sobhan, “Deep reinforcement learning-based controller for DC-link voltage regulation and voltage sag compensation in a solar PV-integrated UPQC system,” Sci. Rep., vol. 15, no. 1, 2025, doi: https://doi.org/10.1038/s41598-025-08729-1.

A. Rawat, S. K. Jha, B. Kumar, and V. Mohan, “Nonlinear fractional order PID controller for tracking maximum power in photo-voltaic system,” J. Intell. Fuzzy Syst., vol. 38, no. 5, pp. 6703–6713, 2020, doi: https://doi.org/10.3233/JIFS-179748

M. J. Zeitouni, A. Parvaresh, S. Abrazeh, S. R. Mohseni, M. Gheisarnejad, and M. H. Khooban, “Digital twins-assisted design of next-generation advanced controllers for power systems and electronics: Wind turbine as a case study,” Inventions, vol. 5, no. 2, pp. 1–19, 2020, doi: https://doi.org/10.3390/inventions5020019

M. Z. Mohd Tumari, M. A. Ahmad, M. H. Suid, and M. R. Hao, “An Improved Marine Predators Algorithm-Tuned Fractional-Order PID Controller for Automatic Voltage Regulator System,” Fractal Fract., vol. 7, no. 7, 2023, doi: https://doi.org/10.3390/fractalfract7070561

Z. Dachang, D. Baolin, Z. Puchen, and C. Shouyan, “Constant Force PID Control for Robotic Manipulator Based on Fuzzy Neural Network Algorithm,” Complexity, vol. 2020, 2020, doi: https://doi.org/10.1155/2020/3491845.

M. S. Amiri, R. Ramli, M. F. Ibrahim, D. A. Wahab, and N. Aliman, “Adaptive particle swarm optimization of pid gain tuning for lower-limb human exoskeleton in virtual environment,” Mathematics, vol. 8, no. 11, pp. 1–16, 2020, doi: https://doi.org/10.3390/math8112040

L. Zhou, A. Pljonkin, and P. K. Singh, “Modeling and PID control of quadrotor UAV based on machine learning,” J. Intell. Syst., vol. 31, no. 1, pp. 1112–1122, 2022, doi: https://doi.org/10.1515/jisys-2021-0213

Published

2025-10-28

How to Cite

[1]
P. . Fernandez, F. . Hadary, and S. D. Panjaitan, “Interactive Learning for Website-Based PID Controller”, JOKI, vol. 17, no. 2, pp. 113-121, Oct. 2025.