Design of an Electrochemical-Based Biosensor Strip for Blood Sugar and Uric Acid Testing

https://doi.org/10.5614/joki.2026.18.1.5

Authors

  • Retno Maharsi Teknik Biomedis, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Vista Sari Afifah Teknik Biomedis, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Zikra Maizi Teknik Biomedis, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Ading Atma Gamilang Teknik Biomedis, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Doni Bowo Nugroho Teknik Biomedis, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Amrina Mustaqim Teknik Fisika, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Keywords:

Electrochemical biosensor, strip, glucose oxidase, uricase, blood glucose, uric acid

Abstract

Rapid and accurate monitoring of glucose and uric acid levels is essential for the early detection of metabolic disorders such as diabetes mellitus and hyperuricemia. This study aims to develop an electrochemical biosensor strip based on a conductive carbon electrode for the detection of glucose and uric acid using glucose oxidase and uricase enzymes. The strip was designed with a three-electrode configuration on an acrylic substrate, which was selected due to its lower resistance and superior coating stability compared to PVC. The signal detection system employed a transimpedance amplifier circuit using the LM358, integrated with an Arduino Uno. Measurements were performed using artificial blood samples with various glucose concentrations (0–200 mg/dL) and uric acid concentrations (0–12 mg/dL). Calibration results demonstrated a linear relationship between analyte concentration and the output current, with R² values approaching 1. After correction, the glucose strip exhibited 92–100% accuracy and 92–97% precision, while the uric acid strip achieved 76–99% accuracy and 96–97% precision. These findings indicate that the developed biosensor strip provides consistent and reasonably accurate measurements, demonstrating its potential as an economical and portable point-of-care device for monitoring glucose and uric acid.

References

S. I. Putri, A. S. Fajriah, P. S. Akbar, A. Widiyanto & J. Triatmojo, “Hubungan kadar asam urat dengan kadar gula darah pada wanita usia subur prediabetes,” Jurnal Informasi Kesehatan Indonesia (JIKI), vol. 7 no. 1, 2021. [Online] Available : https://ojs.poltekkes-malang.ac.id/JIKI

N. Magfira and H. Adnani, "Hubungan aktivitas fisik dan riwayat genetik dengan kadar asam urat di Posyandu Cinta Lansia," J. Ilmu Keperawatan dan Kebidanan, p. 396-403, 2021. https://doi.org/10.26751/jikk.v12i2.1033

V. E. Rosares and E. Boy, “Pemeriksaan kadar gula darah untuk screening hiperglikemia dan hipoglikemia,” J. Implementa Husada, vol. 3, no. 2, pp. 65–71, May 2022. https://doi.org/10.30596/jih.v3i2.11906

Jaliana, Suhadi, L. O. Muh. Sety, “Faktor-faktor yang berhubungan dengan kejadian asam urat.” Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat, vol. 3, no.2, pp 1-13, Apr. 2018. [Online] Available: https://jurnal.upertis.ac.id

E. Oktaviana, B. Nadrati, L. D. Supriyatna, and Z. Zuliardi, “Pemeriksaan gula darah untuk mencegah peningkatan kadar gula darah pada pasien diabetes mellitus,” J. Lentera, vol. 2, no. 2, pp. 232–237, 2022. https://doi.org/10.57267/lentera.v2i2.201

C. Cheng and C. Kao, “An electrochemical biosensor with uricase immobilized on functionalized gold coated copper wire electrode for urinary uric acid assay,” Electroanalysis, vol. 28, no. 4, pp. 695–703, Apr. 2016, https://doi.org/10.1002/elan.201500539

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev., vol. 108, no. 2, pp. 814–825, Feb. 2008, https://doi.org/10.1021/cr068123a

A. Chen & S. Chatterjee, “Nanomaterials based electrochemical sensors for biomedical applications. Chemical Society Reviews”, 42(12), 5425–5438. 2013. https://doi.org/10.1039/C3CS35518G

S. Tvorynska, J. Barek, and B. Josypčuk, “Flow amperometric uric acid biosensors based on different enzymatic mini-reactors: A comparative study of uricase immobilization,” Sens. Actuators B Chem., vol. 344, p. 130252, 2021. https://doi.org/10.1016/j.snb.2021.130252

R. A. Varkani, H. A. Rafiee-Pour, and M. Noormohammadi, “One step immobilization of glucose oxidase on TiO₂ nanotubes towards glucose biosensing,” Microchem. J., vol. 170, p. 106712, 2021. https://doi.org/10.1016/j.microc.2021.106712

S. Suprianto, I. Hafiz, H. Faisal, and H. M. Harefa, "Validasi metode penentuan tablet Allopurinol menggunakan spektrofotometri ultraviolet dalam larutan asam," Jurnal Kimia Sains dan Aplikasi, vol. 22, no. 2, pp. 29-37, Mar. 2019. https://doi.org/10.14710/jksa.22.2.29-37

R. A. Ilahi, M. L. Firdaus, and H. Amir, “Pemanfaatan Nanopartikel Emas (NPE) sebagai pendeteksi kadar asam urat pada urine dengan metode citra digital.” Jurnal Pendidikan dan Ilmu Kimia, 2021. https://doi.org/10.33369/atp.v5i2.17113

G. Greco, A. Giuri, S. Bagheri, M. Seiti, O. Degryse, A. Rizzo, C. Mele, E. Ferraris & C. E. Corcione,. “PEDOT:PSS/Graphene Oxide (GO) ternary nanocomposites for electrochemical applications,” Molecules, 28(7), 2963, 2023. https://doi.org/10.3390/molecules28072963

K. S. Vishnu, S. A. Kumar, S. Ramesh et al. , “NiSe₂ nanostructure-based flexible electrode for non-enzymatic glucose sensing,” Sensors and Actuators B: Chemical, 266, pp. 233–241, 2018

R. Maharsi, A. F. Arif, T. Ogi, H. Widiyandari, and F. Iskandar, “Electrochemical properties of TiOₓ/rGO composite as an electrode for supercapacitors,” RSC Advances, vol. 9, no. 48, pp. 27896–27903, 2019. https://doi.org/10.1039/C9RA04346B

F. Arslan, “An amperometric biosensor for uric acid determination prepared from uricase immobilized in polyaniline-polypyrrole film,” Sensors, vol. 8, no. 9, pp. 5492–5500, Sept. 2008, doi: https://doi.org/10.3390/s8095492

FORA Care Malaysia, "FORA 6 Plus blood glucose monitoring starter pack." foracare.com.my. Accessed : 03 September 2025. [Online]. Available: https://foracare.com.my/products/

N. Castell et al., “Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?,” Environ. Int., vol. 99, pp. 293–302, Feb. 2017. https://doi.org/10.1016/j.envint.2016.12.007

S. Neshani, K. Momeni, D. J. Chen, dan N. M. Neihart, “Highly sensitive readout interface for real-time differential precision measurements with impedance biosensors,” Biosensors, vol. 13, no. 1, art. no. 77, Jan. 2023. https://doi.org/10.3390/bios13010077

K. V. Jarnda, H. Dai, A. Ali, P. L. Bestman, J. Trafialek, G. P. Roberts-Jarnda, R. Anaman, M. G. Kamara, P. Wu, and P. Ding, “A review on optical biosensors for monitoring of uric acid and blood glucose using portable POCT devices: Status, challenges, and future horizons,” Biosensors, vol. 15, no. 4, p. 222, 2025. https://doi.org/10.3390/bios15040222

AOAC International, Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. Gaithersburg, MD, USA: AOAC International, 2002. [Online]. Available : https://s27415.pcdn.co/wp-content/ Diakses pada: 2 Juli. 2025.

In vitro diagnostic test systems — Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus, ISO 15197:2013 , ISO, 2013.

U.S. Food and Drug Administration, "Self-monitoring blood glucose test systems for over-the-counter use: guidance for industry," 2016. [Online]. Available: https://www.fda.gov/media/87134/

International Medical Device Regulators Forum, "Essential principles of safety and performance of medical devices and IVD medical devices (Edition 2)," 2024. [Online]. Available: https://www.imdrf.org/

Bio-Standards, “Understanding accuracy and precision in IVD devices: Implications for safety,” Bio-Standards, 2023. [Online]. Available: https://www.bio-standards.com/ . Diakses pada: 2 Juli. 2025.

Fatmawati, R. Sunartaty and F. Meutia, “Validation of Water Content Testing Method With Analysis of Accuracy and Precision Comparison,” Serambi J. Agric. Technol., vol. 5, no. 1 Hal 59- 63, 2023. https://doi.org/10.32672/sjat.v5i1.6214

O. Y. Dewi, A. A. Saputro, N. Islamiyah, and S. D. Kurnia, “Perbedaan hasil pemeriksaan kadar glukosa darah sewaktu menggunakan metode glucose oxidase – peroxidase aminoantypirin (god-pap) dan strip test POCT (Point Care Of Testing),” Jurnal Medika Indonesia, vol 4, no 2, 2023.

Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang, J. Tian, T. Wang, S. Zhao, J. Liu, L. Tao, and S. Wang, “Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production,” Adv. Mater., vol. 33, no. 48, p. 2104791, 2021. https://doi.org/10.1002/adma.202104791

S. S. Saintika, “The comparison of uric acid levels between POCT and enzymatic methods,” J. Kesehat. Med. Saintika, 2022. http://dx.doi.org/10.30633/jkms.v13i2.1586

L. F. Ang, L. Y. Por, and M. F. Yam, “Development of an amperometric-based glucose biosensor to measure the glucose content of fruit,” PloS One, vol. 10, no. 3, p. e0111859, 2015. https://doi.org/10.1371/journal.pone.0111859

A. P. F. Turner, “Biosensors: Fundamentals and applications - Historic book now open access,” Biosens. Bioelectron., vol. 65, p. A1, Mar. 2015. https://doi.org/10.1016/j.bios.2014.10.027

P. Anupongongarch, T. Kaewgun, J. A. O’Reilly, and P. Khaomek, “A study on the relation between digital output and uric acid in artificial blood solution by using a uric acid detector,” Int. J. Appl. Biomed. Eng., vol. 15, no. 2, 2022. [Online] Available : https://www.researchgate.net/369795020

Published

2026-02-13

How to Cite

[1]
R. Maharsi, V. S. . Afifah, Z. Maizi, A. A. . Gamilang, D. B. Nugroho, and A. Mustaqim, “Design of an Electrochemical-Based Biosensor Strip for Blood Sugar and Uric Acid Testing”, JOKI, vol. 18, no. 1, pp. 58-69, Feb. 2026.