Design and Build a Particle Counter for IoT-Based Monitoring of PM1, PM2.5 and PM10 Concentrations in the Air

https://doi.org/10.5614/joki.2024.16.2.3

Authors

  • Muhamad Anda Falahuddin Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Bandung, Indonesia
  • Asep Puloh Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Bandung, Indonesia
  • Sumeru Sumeru Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Bandung, Indonesia
  • Muhammad Arman Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Bandung, Indonesia
  • Wirenda Sekar Ayu Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Bandung, Indonesia
  • Susilawati Susilawati Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung, Bandung, Indonesia

Keywords:

air quality, particle counter, particulate matter, Internet of Things

Abstract

Poor air quality is a serious health and environmental issue. Microscopic particles such as PM1, PM2.5, and PM10 cause respiratory disorders and other health problems. Therefore, accurate and continuous air quality monitoring is crucial to mitigate the impacts of air pollution. This research aims to design an Internet of Things (IoT)--based particle counter capable of real-time air quality monitoring and reporting via an online platform. The system utilizes a PMS5003 sensor to measure PM1, PM2.5, and PM10 concentrations precisely. Data from the sensor is processed by an ESP8266 microcontroller connected to the internet, enabling direct data transmission to an online platform for further analysis and visualization. Testing is done by creating a 1x1x1 meter testing chamber to simulate various environmental conditions and validate the device's performance. Results show that the particle counter provides accurate data, with an error rate of less than 10% compared to standard devices. The device demonstrates reliable operation across different environmental conditions, showcasing its robustness in practical applications. This IoT-based particle counter offers an innovative solution for effective and efficient air quality monitoring. It is expected to significantly contribute to human health protection efforts and minimize the adverse environmental impacts of air pollution.

References

G. Settimo, M. Manigrasso, and P. Avino, “Indoor air quality: A focus on the european legislation and state-of-the-art research in Italy,” Atmosphere (Basel)., vol. 11, no. 4, 2020, doi: 10.3390/ATMOS11040370.

S. Sun, X. Zheng, J. Villalba-Díez, and J. Ordieres-Meré, “Indoor air-quality data-monitoring system: Long-term monitoring benefits,” Sensors (Switzerland), vol. 19, no. 19, pp. 1–18, 2019, doi: 10.3390/s19194157.

D. Y. C. Leung, “Outdoor-indoor air pollution in urban environment: Challenges and opportunity,” Front. Environ. Sci., vol. 2, no. JAN, pp. 1–7, 2015, doi: 10.3389/fenvs.2014.00069.

P. Carrer and P. Wolkoff, “Assessment of indoor air quality problems in office-like environments: Role of occupational health services,” Int. J. Environ. Res. Public Health, vol. 15, no. 4, 2018, doi: 10.3390/ijerph15040741.

W. A. Wardhana, Dampak Pencemaran Lingkungan. Yogyakarta: Andi, 2004.

U. Bariss, E. Avenitis, G. Junghans, and D. Blumberga, “CO2 Emission Trading Effect on Baltic Electricity Market,” Energy Procedia, vol. 95, pp. 58–65, 2016, doi: 10.1016/j.egypro.2016.09.016.

OMS, “WHO global air quality guidelines,” Part. matter (PM2.5 PM10), ozone, nitrogen dioxide, sulfur dioxide carbon monoxide, pp. 1–360, 2021.

S. Rusmana, M. Falahuddin & Pratikto, “Pengaturan Konsentrasi CO2 Ruangan Menggunakan Exhaust Fan Berbasis Inverter Vsd dan Plc,” Prosiding Ind. Res. Work. Natl. Semin. 2022, pp. 13–14, 2022. [Online]. Available: https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/4259.

M. Benammar, A. Abdaoui, S. H. M. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors (Switzerland), vol. 18, no. 2, 2018, doi: 10.3390/s18020581.

N. S. Technologies, “System To Control Indoor Air Quality in Energy,” 2016.

J. A. Orosa and A. C. Oliveira, “Hourly Indoor Thermal Comfort and Air Quality Acceptance with Passive Climate Control Methods,” Renew. Energy, vol. 34, no. 12, pp. 2735–2742, 2009, doi: 10.1016/j.renene.2009.04.021.

M. Jin, R. Jia, and C. J. Spanos, “Virtual Occupancy Sensing: Using Smart Meters to Indicate Your Presence,” IEEE Trans. Mob. Comput., vol. 16, no. 11, 2017, doi: 10.1109/TMC.2017.2684806.

P. Zhou, G. Huang, L. Zhang, and K. F. Tsang, “Wireless Sensor Network Based Monitoring System for a Large-Scale Indoor Space: Data Process And Supply Air Allocation Optimization,” Energy Build., vol. 103, 2015, doi: 10.1016/j.enbuild.2015.06.042.

C. Monoxide, “MQ-7 GAS SENSOR,” vol. 1, pp. 3–5.

Published

2024-09-01

How to Cite

[1]
M. A. Falahuddin, A. . Puloh, S. Sumeru, M. Arman, W. S. . Ayu, and S. Susilawati, “Design and Build a Particle Counter for IoT-Based Monitoring of PM1, PM2.5 and PM10 Concentrations in the Air”, JOKI, vol. 16, no. 2, pp. 85-94, Sep. 2024.