Prototype of Temperature Monitoring Tool and Control System on Raspberry Pi 3 B+ Based Refrigeration Trainer

https://doi.org/10.5614/joki.2024.16.1.1

Authors

  • Muhammad Arman Politeknik Negeri Bandung
  • Wirenda Sekar Ayu Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung
  • Sugiyarto Sugiyarto Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung
  • Pratikto Pratikto Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung
  • Kamal Amrizal Hakim Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung
  • Dinara Safina Sandra Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung
  • Eliana Syarief Jurusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung

Keywords:

temperature monitoring, control system, refrigeration trainer, Raspberry Pi

Abstract

A refrigeration trainer is a working model of an existing system intended to support student learning in the characterization of refrigeration systems, especially their temperature profile. There are many ways to monitor temperature in refrigeration trainers, such as by implementing a temperature monitoring and control system based on Raspberry Pi 3 B +. This project uses the DS18B20 sensor and Raspberry Pi 3 B+ microprocessor. This system has various features such as temperature monitoring, on/off control for fans and compressors, online and offline data storage, and remote control. After 4 hours of testing, the prototype looked stable without any sudden increase or decrease in temperature values for all measurement point parameters. In addition, the error percentage value which is less than 10% shows that the DS18B20 temperature sensor used provides the best accuracy value and is considered adequate for this prototype.

References

D. Wijaya, U. Nurhasan, and M. A. Barata, “Implementasi Raspberry Pi Untuk Rancang Bangun Sistem Keamanan Pintu Ruang Server dengan Pengenalan Wajah Menggunakan Metode Triangle Face,” J. Inform. Polinema, vol. 4, no. 1, pp. 9–16, 2017, doi : https://doi.org/10.33795/jip.v4i1.138.

R. Wijaya, V. Christian, Y. S. Yuwananda, and I. Alexander, “Temperature and humidity monitoring system in server room using raspberry Pi,” Int. J. Sci. Technol. Res., vol. 8, no. 10, pp. 3075–3078, 2019. Available: https://www.ijstr.org/final-print/oct2019/Temperature-And-Humidity-Monitoring-System-In-Server-Room-Using-Raspberry-Pi.pdf.

S. P. Sheshank Reddy Y, S. E. Saif, and M. Joseph Assistant Professor, “The Real Time Temperature Sensing using Raspberry PI,” IJIRST –International J. Innov. Res. Sci. Technol., vol. 1, no. 12, pp. 232–237, 2015, [Online]. Available: https://www.ijirst.org/articles/IJIRSTV1I12069.pdf.

F. Maulana and N. S. Widodo, “Alat Pengecek Sampah Pendaki Gunung Berbasis Raspberry Pi 3 dan Barcode Scanner,” Bul. Ilm. Sarj. Tek. Elektro, vol. 4, no. 1, pp. 41–50, 2022, doi: https://doi.org/10.12928/biste.v4i1.4293.

D. Lestari, “Sistem Deteksi Banjir Dan Pintu Air Otomatis Menggunakan Raspberry Pi 3 Berbasis Website,” Info. Tek. Jar (Jurnal Nasional Informasi dan Teknologi Jaringan) 4(2) pp. 251-252, November 2022, doi: https://doi.org/10.30743/infotekjar.v4i2.2286.

E. A. Prastyo, “Sensor Suhu DS18B20,” 2020. [Online]. Available: https://www.edukasielektronika.com/2020/09/sensor-suhu-ds18b20.html.

M. Riadi, “Raspberry Pi (Definisi, Fungsi, Jenis, Spesifikasi dan Pemrograman),” kajianpustaka.com, 17 Desember 2020. [Online]. Available: https://www.kajianpustaka.com/2020/12/Raspberry-Pi.html.

M. Pur, “Arti Suhu (Temperatur),” 4 Februari 2021. [Online]. Available: https://www.freedomsiana.id/arti-suhu-temperatur/.

G. Antero, A. Rasyid, and M. D. Atmadja, “Analisis Kinerja Wireless Access Point Menggunakan Wifi Monitoring Tools Berbasis Raspberry Pi 3,” J. Jartel J. Jar. Telekomun., vol. 11, no. 4, pp. 167–174, 2021, doi: https://doi.org/10.33795/jartel.v11i4.245.

N. Bafdal, I. Ardiansah, and S. Asmara, “Application of Internet of Things (IoT) on Microclimate Monitoring System in The ALG Unpad Greenhouse Based on Raspberry Pi,” J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 11, no. 3, p. 518, 2022, doi: https://doi.org/10.23960/jtep-l.v11i3.518-530.

Z. Sopian et al., “Aquatic Life Monitoring Using Raspberry-Pi in Internet of Things (IoT),” Conference: IEEE Symposium on Future Telecommunication Technologies (SOFTT), January, pp. 90–96, 2023, doi: https://doi.org/10.1109/SOFTT56880.2022.10010015.

J. Ivković and B. Radulović, “The Advantages of Using Raspberry Pi 3 Compared to Raspberry Pi 2 SoC Computers for Sensor System Support,” Conference: International conference on Applied Internet and Information Technologies, June 2016, pp. 88–94, 2016, doi: https://doi.org/10.20544/aiit2016.12.

Nayyar and V. Puri, “Raspberry Pi-A Small, Powerful, Cost Effective and Efficient Form Factor Computer: A Review,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. December 2015, pp. 720–737, 2015, [Online]. Available: https://www.researchgate.net/publication/305668622.

M. Fezari and A. Al Dahoud, “Exploring One-wire Temperature sensor ‘DS18B20’ with Microcontrollers,” Univ. Al-Zaytoonah Fac. IT, no. February, pp. 1–9, 2019, [Online]. Available: https://www.researchgate.net/publication/330854061.

Elyounsi and A. N. Kalashnikov, “Evaluating Suitability of a DS18B20 Temperature Sensor for Use in an Accurate Air Temperature Distribution Measurement Network †,” Eng. Proc., vol. 10, no. 1, 2021, https://doi.org/10.3390/ecsa-8-11277

Published

2024-04-29

How to Cite

[1]
M. Arman, “Prototype of Temperature Monitoring Tool and Control System on Raspberry Pi 3 B+ Based Refrigeration Trainer”, JOKI, vol. 16, no. 1, pp. 1-8, Apr. 2024.