EMG-based Wrist Motion Classifications with Root Mean Square Features and Support Vector Machine Classifier

https://doi.org/10.5614/joki.2024.16.2.10

Authors

  • Imam Rakhmadi Program Studi Teknik Fisika,Fakultas Teknologi Industri,Institut Teknologi Bandung, Indonesia
  • Ayu Gareta Risangtuni Kelompok Keahlian Instrumentasi, Kontrol, dan Otomasi, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Suprijanto Suprijanto Kelompok Keahlian Instrumentasi, Kontrol, dan Otomasi, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia

Keywords:

sEMG, Muscle Computer-Interface, moving RMS, SVM

Abstract

The wrist is essential to various human activities, with basic flexion, extension, and straight (normal) movements. These movements can be identified using surface electromyography (sEMG) signals that allow human interaction with computers through muscle activity, referred to as a muscle-computer interface. This research aims to perform the classification of flexion, extension, and normal movements as an initial stage of developing a muscle-computer interface system. The main stages of this research include data acquisition, signal processing, and motion classification with a support vector machine (SVM) offline and not in real-time, using root mean square (RMS) features with a moving window. This study successfully designed an effective sEMG signal measurement and processing method for motion classification. The designed classification algorithm showed high performance with an accuracy of 90.27%, precision of 90.61%, sensitivity of 90.17%, and f1-score of 90.27%, demonstrating the ability of the muscle-computer interface to classify wrist movements with a high degree of accuracy.

References

T. Angraini, Anton, Y. R. Setyawan, dan Yuhefizar, “Implementasi Myoware Sensor Otot untuk Alat Bantu Terapi Penderita Drop hand dan Pasca Stroke,” Elektron Jurnal Ilmiah, vol. 14, no. 1, hlm. 30–37, Jul 2022.

N. Moser, M. K. O’Malley, dan A. Erwin, “Importance of Wrist Movement Direction in Performing Activities of Daily Living Efficiently,” dalam 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, Jul 2020, hlm. 3174–3177. doi: 10.1109/EMBC44109.2020.9175381.

M. Doğan dkk., “Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors,” Gait Posture, vol. 70, hlm. 141–147, Mei 2019, doi: 10.1016/j.gaitpost.2019.02.024.

S. Halakoo, F. Ehsani, N. Masoudian, M. Zoghi, dan S. Jaberzadeh, “Does anodal trans-cranial direct current stimulation of the damaged primary motor cortex affects wrist flexor muscle spasticity and also activity of the wrist flexor and extensor muscles in patients with stroke?: a Randomized Clinical Trial,” Neurological Sciences, vol. 42, no. 7, hlm. 2763–2773, Jul 2021, doi: 10.1007/s10072-020-04858-9.

T. Triwiyanto dkk., “Electromyography Feature Analysis to Recognize the Hand Motion in a Prosthetic Hand Design,” Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 50, hlm. 25–37, Apr 2021, doi: 10.4028/www.scientific.net/JBBBE.50.25.

X. Yang dkk., “Simultaneous Prediction of Wrist and Hand Motions via Wearable Ultrasound Sensing for Natural Control of Hand Prostheses,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, hlm. 2517–2527, 2022, doi: 10.1109/TNSRE.2022.3197875.

T. Triwiyanto dkk., “Embedded Machine Learning Using a Multi-Thread Algorithm on a Raspberry Pi Platform to Improve Prosthetic Hand Performance,” Micromachines (Basel), vol. 13, no. 2, hlm. 191, Jan 2022, doi: 10.3390/mi13020191.

E. Scheme dan K. Englehart, “Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use,” The Journal of Rehabilitation Research and Development, vol. 48, no. 6, hlm. 643, 2011, doi: 10.1682/JRRD.2010.09.0177.

N. Parajuli, N. Sreenivasan, P. Bifulco, dan M. Cesarelli, “Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation,” Sensors, vol. 19, no. 20, hlm. 4596, Okt 2019.

E. A. Marhaendraputro dkk., “Electromyography digital input assistance as a muscle- computer interface device: A pilot study in development of stroke rehabilitation and assistive devices,” AIP Conference Proceedings, 2634(1), 2023, hlm. 020080. doi: 10.1063/5.0111301.

V. M. Navarro, R. Nieto, P. R. Fernández, Á. Hernández, A. J. del-Ama, dan S. Borromeo, “SoC Architecture for Acquisition and Processing of EMG Signals,” 2023 38th Conference on Design of Circuits and Integrated Systems (DCIS), IEEE, Nov 2023, hlm. 1–6. doi: 10.1109/DCIS58620.2023.10335993.

M. Zheng, M. S. Crouch, dan M. S. Eggleston, “Surface Electromyography as a Natural Human–Machine Interface: A Review,” IEEE Sens J, vol. 22, no. 10, hlm. 9198–9214, Mei 2022, doi: 10.1109/JSEN.2022.3165988.

M. Zahak, “Signal Acquisition Using Surface EMG and Circuit Design Considerations for Robotic Prosthesis,” dalam Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, InTech, 2012. doi: 10.5772/52556.

S. K. Singh dan A. Chaturvedi, “A reliable and efficient machine learning pipeline for American sign language gesture recognition using EMG sensors,” Multimed Tools Appl, vol. 82, no. 15, hlm. 23833–23871, Jun 2023, doi: 10.1007/s11042-022-14117-y.

E. Farago, D. MacIsaac, M. Suk, dan A. D. C. Chan, “A Review of Techniques for Surface Electromyography Signal Quality Analysis,” IEEE Rev Biomed Eng, vol. 16, hlm. 472–486, 2023, doi: 10.1109/RBME.2022.3164797.

A. Sultana, M. T. I. Opu, F. Ahmed, dan M. S. Alam, “A novel machine learning algorithm for finger movement classification from surface electromyogram signals using Welch power estimation,” Healthcare Analytics, vol. 5, hlm. 100296, Jun 2024, doi: 10.1016/j.health.2023.100296.

A. Phinyomark, P. Phukpattaranont, dan C. Limsakul, “Feature reduction and selection for EMG signal classification,” Expert Syst Appl, vol. 39, no. 8, hlm. 7420–7431, Jun 2012, doi: 10.1016/j.eswa.2012.01.102.

Z. Li, K. Li, J. Li, dan N. Wei, “Optimization of sEMG Classification Model Based on Correlation Analysis and Feature Selection,” dalam 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, Des 2020, hlm. 402–407. doi: 10.1109/ICARM49381.2020.9195284.

F. L. Sadida, M. I. Mandasari, dan Suprijanto, “Articulator Muscle Contraction Evaluation in Vowel Phonemes Articulation Based on Facial Images and Electromyography Signal,” dalam 2023 8th International Conference on Instrumentation, Control, and Automation (ICA), IEEE, Agu 2023, hlm. 120–125. doi: 10.1109/ICA58538.2023.10273120.

M. Arozi, M. Ariyanto, A. Kristianto, Munadi, dan J. D. Setiawan, “EMG Signal Processing of Myo Armband Sensor for Prosthetic Hand Input using RMS and ANFIS,” dalam 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), IEEE, Sep 2020, hlm. 36–40. doi: 10.1109/ICITACEE50144.2020.9239169.

H. Basak, A. Roy, J. B. Lahiri, S. Bose, dan S. Patra, “SVM and ANN based Classification of EMG signals by using PCA and LDA,” Okt 2021, arXiv preprint . arXiv:2110.15279 (2021).

Y. Narayan, “Comparative analysis of SVM and Naive Bayes classifier for the SEMG signal classification,” Mater Today Proc, vol. 37, no. Part 2, hlm. 3241–3245, Jan 2021, doi: 10.1016/J.MATPR.2020.09.093.

M. Aviles, L.-M. Sánchez-Reyes, R. Fuentes-Aguilar, D. Toledo-Pérez, dan J. Rodríguez-Reséndiz, “A Novel Methodology for Classifying EMG Movements Based on SVM and Genetic Algorithms,” Micromachines (Basel), vol. 13, no. 12, hlm. 2108, Nov 2022, doi: 10.3390/mi13122108.

I. Amelia, A. N. Hermana, dan A. Pramana, “Verifikasi Tanda Tangan Dengan Edge Detection Dan Metode Learning Vector Quantization,” MIND Journal, vol. 1, no. 1, hlm. 49, Mei 2018, doi: 10.26760/mindjournal.v1i1.49.

M. Ghofrani Jahromi, H. Parsaei, A. Zamani, dan D. W. Stashuk, “Cross Comparison of Motor Unit Potential Features Used in EMG Signal Decomposition,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 5, hlm. 1017–1025, Mei 2018, doi: 10.1109/TNSRE.2018.2817498.

N. Sriraam, “EMG-Based Essential Tremor Detection Using PSD Features With Recurrent Feedforward Back Propagation Neural Network,” International Journal of E-Health and Medical Communications, vol. 12, no. 6, hlm. 1–16, Sep 2021, doi: 10.4018/IJEHMC.20211101.oa10.

G. Naik, Ed., Biomedical Signal Processing. dalam Series in BioEngineering. Singapore: Springer Singapore, 2020. doi: 10.1007/978-981-13-9097-5.

I. Mustiadi, T. S. Widodo, dan I. Soesanti, “Analisis ekstraksi ciri sinyal EMG menggunakan wavelet discrete transform,” Seminar Nasional Informatika 2012 UPN ”Veteran” Yogyakarta, 2012.

Published

2024-10-23

How to Cite

[1]
I. Rakhmadi, A. G. . Risangtuni, and S. Suprijanto, “EMG-based Wrist Motion Classifications with Root Mean Square Features and Support Vector Machine Classifier”, JOKI, vol. 16, no. 2, pp. 162-169, Oct. 2024.

Most read articles by the same author(s)