Rancang Bangun Sistem Deteksi Hama Tanaman Whiteflies Berbasis Jaringan Sensor Nirkabel dan Aplikasi Web

https://doi.org/10.5614/joki.2024.16.2.8

Penulis

  • Tua Agustinus Tamba Program Studi Sarjana Teknik Elektro, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung, Indonesia
  • Stevanus Darwin Program Studi Sarjana Teknik Elektro, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung, Indonesia
  • Gabriela Solaiman Program Studi Sarjana Teknik Elektro, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung, Indonesia
  • Jason Reysan Program Studi Sarjana Teknik Elektro, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung, Indonesia

Kata Kunci:

pemrosesan citra, histogram equalization, otomasi pemantauan hama, hama whiteflies, jaringan sensor nirkabel

Abstrak

Salah satu tantangan dalam kegiatan pertanian adalah terkait upaya deteksi dan pemantauan hama yang dapat dijadikan basis untuk penentuan tindak penanganan yang tepat. Greenhouse whiteflies (GWF) adalah salah satu hama berbahaya yang menyerap getah tanaman sehingga membuat tanaman melemah atau bahkan mati akibat kekurangan nutrisi. Upaya deteksi hama GWF umumnya masih dilakukan secara manual menggunakan yellow sticky trap (YST) yang membutuhkan pengecekan oleh petani secara berulang dengan selang waktu lama antar setiap aktivitas pengecekan. Penelitian ini ditujukan untuk merancang suatu sistem otomasi pemantauan hama GWF berbasis gambar YST. Metode perancangan yang diajukan adalah melalui penggunaan suatu sistem jaringan sensor nirkabel berbasis web yang dilengkapi dengan algoritma pengolahan citra dan dioperasikan secara real-time. Pada metode yang diajukan, sensor kamera digunakan untuk menangkap citra YST yang kemudian diproses dengan aplikasi berbasis website. Pengujian purwarupa hasil penelitian menunjukkan bahwa rancangan sistem deteksi hama berfungsi dengan baik dan tanpa kendala. Secara khusus pada aspek perangkat keras, pengujian menunjukkan sensor kamera di lapangan dapat diakses dan mengirimkan data secara real-time ke aplikasi website yang dirancang. Sementara pada aspek algoritma pengolahan citra, teknik deteksi citra berbasis analisis histogram yang digunakan mampu mendeteksi hama whiteflies pada citra daun yang ditinjau dengan tingkat akurasi mencapai rentang 94%-100%.

Referensi

B. P. Statistik, Hasil Survei Pertanian antar Sensus (SUTAS) 2018 Seri-A2. [Online] Available: : https://www. bps. go. id/publication/2019/10/31/9567dfb 39bd984 aa45124b40/ hasil-survei-pertani an-antar-sensus--sutas--2018- seri-a2. html. [Accessed 17 July 2024]

G. Idoje, T Dagiuklas, & M. Iqbal, “Survey for smart farming technologies: Challenges and issues,” Computers & Electrical Engineering, vol. 92, pp. 107104, 2021.

M. C. F. Lima, M. E. D. de Almeida Leandro, C. Valero, L. C. P. Coronel, & C. O. G. Bazzo, “Automatic detection and monitoring of insect pests—A review,” Agriculture, vol. 10, no. 5, pp. 161, 2020.

W. Li, D. Wang, M. Li, Y. Gao, J. Wu, & X. Yang, “Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse,” Computers and Electronics in Agriculture, vol. 183, pp. 106048, 2021.

R. M. Saleem, R. Kazmi, I. S. Bajwa, A. Ashraf, S. Ramzan, & W. Anwar, “IOT‐based cotton whitefly prediction using deep learning,” Scientific Programming, vol. 2021.1, pp. 8824601, 2021.

S. Bhat & S. Kumar. "Conventional and recent approaches of integrated pest management in greenhouse cultivation." in Protected Cultivation, 1st ed, New York, Apple Academic Press, 2024, pp. 255-274. 2024.

A. Nasruddin, J. Jumardi, & M. Melina, “Population dynamics of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and its populations on different planting dates and host plant species,” Annals of Agricultural Sciences, vol. 66, no. 2, pp. 109-114, 2021.

H. Rehman, A. Bukero, A. G. Lanjar, L. Bashir, Z. Lanja, & S. A. Nahiyoon, “ Comparison of different mechanical traps to screening and control of whitefly (Aleyrodidea: Hemiptera) population in tomato crop,” Pure and Applied Biology, vol. 9, no. 4 pp. 2151-2157, 2020.

E. Böckmann, A. Pfaff, M. Schirrmann, & M. Pflanz, “Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps,” Scientific Reports, vol. 11, no. 1, pp. 10419, 2021.

M. K. G. Elsherbeni & Y. E. Afia, “Evaluation efficiency of sticky traps on attraction of greenhouse whitefly, Trialeurodes Vaporariorum (Westwood) infesting carnation flowers under glasshouse conditions,” Egyptian Academic Journal of Biological Sciences - A: Entomology, vol. 14, no. 2, 2021.

L.-Y. Chiu, D. J. A. Rustia, C.-Y. Lu, & T.-T. Lin, “Modelling and forecasting of greenhouse whitefly incidence using time-series and ARIMAX analysis,” IFAC-PapersOnLine, vol. 52, no. 30, pp. 196-201, 2019.

H. Rehman, A. Bukero, A.G. Lanjar, L. Bashir, Z. Lanja, & S. A. Nahiyoon, “Comparison of different mechanical traps to screening and control of whitefly (Aleyrodidea: Hemiptera) population in tomato crop,” Pure and Applied Biology, vol. 9, no. 4, pp. 2151-2157, 2020.

D. M. Pinto-Zevallos & I. Vänninen, “Yellow sticky traps for decision-making in whitefly management: What has been achieved?,” Crop Protection, vol. 47, pp. 74-84, 2013.

P. Sanjeevi, S. Prasanna, B. Kumar, G. Gunasekaran, I. Alagiri, & R. Anand, “Precision agriculture and farming using Internet of Things based on wireless sensor network,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 12 pp. e3978, 2020.

M. Mahbub, “A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network,” Internet of Things, vol. 9, pp. 100161, 2020.

M. S. BenSaleh, R. Saida, Y. H. Kacem, & M. Abid, “Wireless sensor network design methodologies: A survey,” Journal of Sensors, vol. 2020, no. 1 pp. 9592836, 2020.

W. Dargie & C. Poellabauer, Fundamentals of Wireless Sensor Networks: Theory and Practice. John Wiley & Sons, 2010.

E. Setyawati, H. Wijoyo, & N. Soeharmoko. Relational Database Management System (RDBMS). CV Pena Persada, 2020.

K. G. Dhal, A. Das, S. Ray, J. Gálvez, & S. Das, “Histogram equalization variants as optimization problems: a review,” Archives of Computational Methods in Engineering, vol. 28, pp. 1471-1496, 2021.

K. Jha, A. Sakhare, N. Chavhan, & P. P. Lokulwar, “A review on image enhancement techniques using histogram equalization,” Grenze International Journal of Engineering & Technology, vol. 10, no. 1, 2024.

Y. Xie, L. Ning, M. Wang, & C. Li, “Image enhancement based on histogram equalization,” Journal of Physics: Conference Series, vol. 1314, no. 1, pp. 012161, 2019.

P. Musa, F. A. Rafi, & M. Lamsani, “A review: contrast-limited adaptive histogram equalization (CLAHE) methods to help the application of face recognition,” Proc. International Conference on Informatics & Computing, pp. 1-6, 2018.

M. Sezgin, Mehmet & B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” Journal of Electronic Imaging, vol. 13, no. 1, pp. 146-168, 2004.

R. Kamath, M. Balachandra, & S. Prabhu, “Raspberry Pi as visual sensor nodes in precision agriculture: A Study," IEEE Access, vol. 7, pp. 45110- 45122, 2019.

Z, F. Azzahra & A. D. Anggoro, ”Analisis teknik entity-relationship diagram dalam perancangan database sebuah literature review,” INTECH (Informatika dan Teknologi), vol. 3, no. 1, pp. 8-11, 2022.

Diterbitkan

2024-10-11

Cara Mengutip

[1]
T. A. . Tamba, S. . Darwin, G. . Solaiman, dan J. . Reysan, “Rancang Bangun Sistem Deteksi Hama Tanaman Whiteflies Berbasis Jaringan Sensor Nirkabel dan Aplikasi Web”, JOKI, vol. 16, no. 2, hlm. 136-150, Okt 2024.