Analysis of the Effect of Varying Water Flow Rates on Photovoltaic Module Cooling Systems using CFD (Computational Fluid Dynamics) Simulations

https://doi.org/10.5614/joki.2024.16.2.9

Authors

  • Syafril Agustion Tomayahu Laboratorium Manajemen Energi, Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • M. Sya'banur Rozaq Laboratorium Manajemen Energi, Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Rahmat Romadhon Kelompok Keahlian Rekayasa kinerja Lingkungan Binaan, Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Justin Pradipta (1)Laboratorium Manajemen Energi, Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia, (2) Kelompok Keahlian Teknik Fisika, Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Irsyad N. Haq (1) Laboratorium Manajemen Energi, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia; (2) Kelompok Keahlian Fisika Teknik, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
  • Edi Leksono (1) Laboratorium Manajemen Energi, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia; (2) Kelompok Keahlian Fisika Teknik, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia

Keywords:

Photovoltaic modules, variation in water flow rate, CFD simulation

Abstract

Developing renewable energy is one of the main strategies to reduce greenhouse gas emissions and achieve global goals to limit global warming above pre-industrial temperatures. This study analyzes the effect of varying the cooling water flow rate on MS100-36 type polycrystalline photovoltaic modules through ANSYS Fluent 2024 R1 Student simulation. This simulation was conducted from 08:00 to 17:00, focusing on the influence of inlet water temperature on the temperature distribution of photovoltaic modules. The simulation results indicate thermal steady-state conditions at an irradiation of 463 W/m² with a natural coefficient of 5 W/m².There is a temperature distribution process occurring in the photovoltaic module under fluent conditions, where the effect of the inlet water temperature on the surface of the PV module is examined for a water temperature range of 20°C to 30°C in 5°C intervals, with water flow rates of 0.05, 0.1, and 0.2 kg/s. The contour images indicate that an increase in water flow rate can enhance the cooling effect of the photovoltaic module. Higher inlet water temperatures transfer less heat, producing higher temperatures for the photovoltaic modules. A water flow rate of 0.2 kg/s and an inlet water temperature of 20°C produce a lower and more uniform temperature distribution on the photovoltaic modules. Thus, increasing the water flow rate and decreasing the inlet water temperature have proven effective in enhancing the cooling performance of photovoltaic modules.

References

F. L. Agus Cahyono Adi, “Handbook of energy and economic statistics of Indonesia,” Ministry of Energy and Mineral Resources Republic of Indonesia, 2022.

A. C. Lazaroiu, M. Gmal Osman, C. V. Strejoiu, and G. Lazaroiu, “A Comprehensive Overview of Photovoltaic Technologies and Their Efficiency for Climate Neutrality,” Dec. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/su152316297.

I. Renewable Energy Agency, World Energy Transitions Outlook 2022: 1.5°C Pathway - Executive Summary. 2022. [Online]. Available: www.irena.org

A. D. Sakti et al., “Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia,” Remote Sens (Basel), vol. 14, no. 12, Jun. 2022, doi: 10.3390/rs14122796.

E. Tarigan, “The Effect of Dust on Solar PV System Energy Output under Urban Climate of Surabaya, Indonesia,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1373/1/012025.

T. Rahajoeningroem and I. Jatnika, “Sistem Pendingin Otomatis Panel Surya Untuk Peningkatan Daya Output Berbasis Mikrokontroler Solar Panel Automatic Cooling System to Increase the Output Power Based on The Microcontroller,” TELEKONTRAN, vol. 10, no. 1, 2022, doi: 10.34010/telekontran.v10i1.4712.

G. R. Cahyono, P. R. Ansyah, and N. Q. Awaly, “Pendinginan panel surya menggunakan kotak pendingin dan sirip pendingin,” Angkasa: Jurnal Ilmiah Bidang Teknologi, vol. 13, no. 1, May 2021, doi: 10.28989/angkasa.v13i1.947.

R. Lazzarin, “Heat pumps and solar energy: A review with some insights in the future,” Aug. 01, 2020, Elsevier Ltd. doi: 10.1016/j.ijrefrig.2020.03.031.

S. Almoatham, A. Chiasson, R. Mulford, and M. Moreno-Pena, “Development of experimentally-validated models for nocturnal cooling of thermal systems with photovoltaic thermal (PVT) modules,” Solar Energy, vol. 268, p. 112279, Jan. 2024, doi: 10.1016/j.solener.2023.112279.

M. M. Rahman, M. Hasanuzzaman, and N. A. Rahim, “Effects of various parameters on PV-module power and efficiency,” Energy Convers Manag, vol. 103, pp. 348–358, Jul. 2015, doi: 10.1016/j.enconman.2015.06.067.

W. Woon Lee Meng Lee Lian Seng, “Solar PV Cell Cooling with cool water circulation system Design of closed-loop cool water re-circulatory system,” 2021. [Online]. Available: www.globalscientificjournal.com

Y. M. Irwan et al., “Comparison of solar panel cooling system by using dc brushless fan and dc water,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2015. doi: 10.1088/1742-6596/622/1/012001.

Z. Syafiqah, N. A. M. Amin, Y. M. Irwan, M. Z. Shobry, and M. S. A. Majid, “Analysis of photovoltaic with water pump cooling by using ANSYS,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Oct. 2017. doi: 10.1088/1742-6596/908/1/012083.

M. Huot, L. Kumar, J. Selvaraj, M. Hasanuzzaman, and N. A. Rahim, “Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels,” International Journal of Photoenergy, vol. 2021, 2021, doi: 10.1155/2021/2335805.

B. Sutanto, Y. S. Indartono, A. T. Wijayanta, and H. Iacovides, “Enhancing the performance of floating photovoltaic system by using thermosiphon cooling method: Numerical and experimental analyses,” International Journal of Thermal Sciences, vol. 180, Oct. 2022, doi: 10.1016/j.ijthermalsci.2022.107727.

L. Liu, Q. Wang, H. Lin, H. Li, Q. Sun, and R. Wennersten, “Power generation efficiency and prospects of floating photovoltaic systems,” in Energy Procedia, Elsevier Ltd, 2017, pp. 1136–1142. doi: 10.1016/j.egypro.2017.03.483.

B. Sutanto et al., “Design and analysis of passively cooled floating photovoltaic systems,” Appl Therm Eng, vol. 236, Jan. 2024, doi: 10.1016/j.applthermaleng.2023.121801.

N. M. Adam, O. H. Attia, A. O. Al-Sulttani, H. A. Mahmood, A. As’arry, and K. A. M. Rezali, “Numerical analysis for solar panel subjected with an external force to overcome adhesive force in desert areas,” CFD Letters, vol. 12, no. 9, pp. 60–75, 2020, doi: 10.37934/cfdl.12.9.6075.

T. L. Bergman, A. S. Lavine, F. P. Incropera , D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th edition. Wiley, 2011.

Published

2024-10-14

How to Cite

[1]
S. A. Tomayahu, M. S. . Rozaq, R. Romadhon, J. . Pradipta, I. N. . Haq, and E. Leksono, “Analysis of the Effect of Varying Water Flow Rates on Photovoltaic Module Cooling Systems using CFD (Computational Fluid Dynamics) Simulations”, JOKI, vol. 16, no. 2, pp. 151-161, Oct. 2024.

Most read articles by the same author(s)